怎么感觉 v2 这里很少有 ai 或大模型开发相关得讨论啊

355 天前
 iorilu

现在不是 ai 火吗

我在思考各种 gpt, llama 这种 对于 ge 个人来说有没有什么好的方向能够 做些产品

怎么没有人想在开发一个国内得 huggingface 这种可以分享上传模型得网站

这样比如有个人训练得模型, 可以发到这个网站上, 用户可以付费使用, 网站本身也可以提成一部分

12271 次点击
所在节点    程序员
81 条回复
hiphooray
355 天前
因为都在刷论文 and 闷头卷,并且巨大的硬件成本使得开发者人数本就不会太多(来自一个具身智能算法开发者,以及拜托国内外 CS 的大佬们不要再创造新词汇了)
xjx0524
355 天前
@4rat 同一直记得是魔塔,后来发现人家叫魔搭...
ShadowPower
355 天前
想给大家分享几点:
1. 虽然个人制作一个预训练模型不太现实,但是其实微调模型的门槛很低;
2. 如果你只有 6GB 显存,可以尝试微调 Qwen 1.8B 。虽然不能指望它给你准确回答问题,或者帮你写出正确的代码,但用于只需要想象力的文学创作方面还不错;
3. 零一万物的 Yi 系列模型其实很强,尽管中文互联网上讨论得少。主要优势在中文写作上。虽然它不那么遵循指令,然而 34B-Chat 的中文写作质量真的可以超过 GPT4 ;
4. 除了在 LLaMa 1 刚出来的那个时代,实际上,参数量大的开源模型效果往往不理想。参数量小的开源模型反而更实用;
5. 不要迷信 M2 Ultra 192GB ,想玩出花样,目前看来,NVIDIA 仍然是首选。


说说为什么参数量大的开源模型效果不理想吧。其实最大的原因在于参数量越大,训练成本越高。哪怕对于商业公司来说,预算也不是无限的。训练大模型其实有很多复杂的工程问题,需要多机器的都不简单。

参数量小的模型因为训练成本比较低,很快就能迭代新版本,不断地追加训练数据。
于是,小一点的模型相比大一点的模型,训练得更加充分,数据也更多样。
对商业公司来说,也更适合尝试不同的训练方法。全参数训练 6B 模型最低其实只要一块显卡,60 多 GB 显存。

还有,为什么不要迷信 M2 Ultra 192GB 。
我尝试了市面上绝大多数比较受欢迎的模型(仅中/英文),绝大多数有用的模型都在 1~34B 内。其中又有几乎 95%的模型在 1.5~14B 这个范围内。

M2 Ultra 192GB 的优势则是可以在输出效率能接受的情况下尝试 70B 、120B 、180B (只有一个)的模型。
不过很快你就会发现这些模型一点用都没有:
写作很差,都是那种总-分-总的议论文结构,而且非常机械、死板;
写代码或者回答问题都是错误百出……写代码最好的模型大多数有 34B 左右的参数量;
角色扮演也很无趣,输出实在是太正经了。无论扮演什么,都像在跟售后客服聊天,而且服务范围很有限。最好的角色扮演模型大多数是 13B 左右的参数量。原因很简单,网友自己微调模型,能接受的最高成本在这里。

另外大型语言模型其实可以量化运行,而且性能损失很小。llama.cpp 的 Q5_K_M 量化几乎不影响写作性能,依然能保持和 fp16 同等的质量。只是输出的内容不完全相同。

如果想用 M2 Ultra 192GB 训练模型,其实并不好使。坑很多,有这些:
运行不一定报错,但是训练出来的模型可能是废的。还不好排查问题在哪,网上没人讨论。比如,训练 Stable Diffusion 的 LoRA 拿来用,输出的图都是黑的……
训练速度超级慢。要是模型本身就不大,其实用 NVIDIA 游戏显卡坑少效率还高。模型大到 NVIDIA 游戏显卡跑不起来的情况下,训练速度就相当慢了。你不会愿意把它放着跑个一两年,还保持满载。

PyTorch 的 MPS 后端跑很多模型看起来“能跑”,但是有一些算子实际上没有 MPS 实现,会回退到 CPU 上跑。所以不能光看显卡理论性能。
在训练的时候,ANE 是完全用不上的(推理的时候能用上,但它只能做 INT8/FP16 卷积)。而 NVIDIA 显卡的 Tensor Core 能用上。

个人玩 LLM 最具性价比的选择是 3090 ,进阶选择是两块 3090 ,缺点是噪声比较大,主板和电源要求也高。
4090 在噪声方面好一些,但是现在还是太贵了。

不捡垃圾,不买矿卡,不魔改的情况下,入门选择是 4060Ti 16GB 。
只想体验一下的话,租个 VPS 玩玩,或者用 llama.cpp 用 cpu 跑……
xjx0524
355 天前
@k9982874 早些年 v 站真的是技术论坛,很多疑难杂症都能在这求解,但现在真的越来越水了。。。
tangtang369
355 天前
这种要靠 gpu 跑的 个人自己做慈善 可能钱包吃紧
当然如果你也 ai 的问题也可以问我
anubu
355 天前
国内玩的话应该会接触到魔搭、autodl ,差不多就是 huggingface 、colab 一类,集成度比较低但能用。
模型和平台个人开发者应该没太多机会,都是比较重的方向。搞一些工具或应用,比如 RAG 、可控生成,似乎还有点意思。比如 langchian-chatchat 、fastgpt ,有能力也可以搞一搞应用框架一类。
目前的商业化落地比较困难,LLM 生态都是看着挺有意思,要做到能投产却很困难。有大量的开源项目,不怎么费力就可以跑个七七八八,但要做到融合到生产业务里就很困难了。基于 langchain 、llama-index 等框架,糊一个勉强能落地的应用,能从政企跟风项目层层外包中捞点汤喝已是不错的结果。
iorilu
355 天前
@ShadowPower 不错得经验分享, 我目前就一个小机器配 3060 12G, 装了 ubuntu 做测试机玩玩

如果想弄比如两块 4060ti 16G 之类得, 现在又方便能分布式跑在两块卡训练吗
ShadowPower
355 天前
@iorilu 只想双显卡加快训练速度的话,用 huggingface 的 accelerate 库就可以了,官方文档: https://huggingface.co/docs/accelerate/index

不过它只支持数据并行,所以不能解决那种一块显卡显存不够,用多块才够的问题。

之前看过一些框架,据说支持把模型拆分到多块显卡上训练。例如 DeepSpeed 、ColossalAI 之类的。只是我还没成功跑起来……
herozzm
355 天前
个人没机会
iorilu
355 天前
@ShadowPower 比如想专门微调用于中文写作生成的模型,能推荐下吗, 比如我想基于一个中文模型训练金庸全集写武侠,用那个模型比较好

本来我想找个中文的 GPT2 ,因为我觉得 GPT2 模型大小比较合适,但 gpt2 好像没公认比较好的中文模型把

另外比如用某个模型,那 embeding 是用模型自带的比较好还是用 bert 中文这种,毕竟 bert 也算是专门训练词嵌入的吧
ShadowPower
355 天前
@iorilu
Yi-6B 就挺好的,预训练数据里已经有好多小说数据了。
如果还想更小一些,还有 RWKV ,不过相关的生态比较少。

embeding 用这个: https://huggingface.co/moka-ai/m3e-base
Huelse
355 天前
自从 v2 在墙外后就意味着有更多的情绪贴会被发出来,纯粹的技术讨论只在几个小分区里可以看到,算是各有利弊

回归本题,我认识的 AI 大佬都是博士以上的,他们大多没空在这类论坛上发帖,而且 AI 对硬件条件要求较高,不是每个人都能玩得动的,可以说是大公司或国家级别的资源才够,大概率都涉密
gitlight
355 天前
我还在天天调 BERT 洗 bad case(꒦_꒦) ,LLM 玩不起
zjuster
355 天前
v2 这里主要是“应用“,如何将 chatgpt 的服务接口封包为国内可用的第三方。 这个实际地多。
mightybruce
355 天前
看了看 ShadowPower 发的,其实个人玩玩还是可以的,
这类模型微调很多, 其实就是用语料训练一个 chatbot
半年前那个 AI 孙艳姿 唱歌 还火过,也是这类, 自己玩玩可以, 商业上谈不上。
另外,国内任何 AI 应用上线 还要接受《生成式人工智能服务管理办法》制约,敏感词是要过滤的。

国内外 AI 团队已经不再是简单的微调了,都已经上升到 AI 对齐了。
jim9606
355 天前
你如果是说当个 openai 搬运工的,大把,我差不多天天都能看到。
至于真搞训练的,不是要大把钱就是大把数据,跟小创业者也没啥关系。
而且你看那些追这波热潮的,哪怕是大厂,都是顶多换皮微调级别,真搞训练的怕不是连融资都拿不到。
isouu
355 天前
@ShadowPower 这是用 Base 模型还算 Chat 模型?训练数据的话是将知乎高赞回答喂进去的吗
ShadowPower
355 天前
@isouu Chat 模型,训练数据是一些大 V 的回答
isouu
355 天前
@ShadowPower 训练好的模型能够有哪些变现的场景呢?
veotax
354 天前
可以看看这个 langchain 平台,可以集成多种 GPT 接口:

Casibase:开源的企业级 AI 知识库,让 AI 助手学会所有企业内部文档知识!包括如下特性:

1. 支持 ChatGPT 、Azure OpenAI 、HuggingFace 、OpenRouter 、百度文心一言、讯飞星火、Claude 等众多国内外模型;
2. 支持多种 Embedding 嵌入 API 接口,如 OpenAI Ada, 百度文心一言等;
3. 支持多种文档格式:txt, markdown, docx, pdf 等,支持 PDF 文件智能解析;
4. 支持 AI 小助手通过右下角弹框嵌入到应用网站,进行在线实时聊天,支持聊天会话人工接入;
5. 支持多用户、多租户,支持 Casdoor 单点登录;
6. 所有聊天会话保存日志,管理员可查看、修改,方便审计、计费等操作;
7. 界面语言支持中文、英文等多语种。

Casibase 帮助实现企业内部员工知识分享与积累、智能客服等多种功能场景,也适用于个人知识库场景。目前开源版已达到 GitHub 1500+ stars ,用户好评如潮,欢迎体验~

- GitHub: https://github.com/casibase/casibase
- 官网文档: https://casibase.org

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1004201

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX