设备是 mbp m3 16G 内存的。
因为 m 芯片并不好安装 xgboost 等库,经过一番搜索了解到可以使用 Docker
通过摸索构建了一个基于 Python 的镜像(包含 xgb 等机器学习库)
但是在训练模型的时候,经常报错,表现为 notebook 崩溃需要重来,或者是 python 脚本 killed
经过进一步搜索,发现可能和内存、cpu 有关。
我在创建容器的时候,并没有指定一些 cpu 、内存的参数,在 desktop 中已经将相关设置拉满了
"CpuShares": 0,
"Memory": 0,
"NanoCpus": 0,
"CgroupParent": "",
"BlkioWeight": 0,
"BlkioWeightDevice": [],
"BlkioDeviceReadBps": [],
"BlkioDeviceWriteBps": [],
"BlkioDeviceReadIOps": [],
"BlkioDeviceWriteIOps": [],
"CpuPeriod": 0,
"CpuQuota": 0,
"CpuRealtimePeriod": 0,
"CpuRealtimeRuntime": 0,
https://imgur.com/a/oKDBMmh.jpg
理论上这不就是可以随意使用 mbp 的内存和 cpu 了?
进一步在重现问的时候,使用 docker stats 发现,在数据读取和处理的时候,
1 、cpu 和 内存使用都会涨,在数据读取完之后,cpu 立刻 0%,但是 mem usage 没有变化,还是 10G 左右,继续执行代码,马上就崩溃了,为啥内存不会恢复?
2 、即使没有限制使用 cpu 核心数,但是数据处理的时候, 容器的 cpu 占比可能 200%,但是电脑还是有 50% 的 cpu 剩余,为啥用不满?
3 、在建模的时候,容器的 cpu 可以飙升到 600%,但是内存使用居然没有用满?
实在是不怎么使用 docker ,总是感觉是不是容器不能很好的利用 mbp 的资源,理论上是比较好的设备了,居然跑个 xgb 跑不动
还是是我的数据量太大了吗?(差不多 15w 行 x 1000 列)
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.