利用神经网络(MLP)做回归分析,输入的参数有 8 个属性以此来回归参数 Y,数据量大约 9 万条,模型的 mape 是 18%左右,还有优化空间吗?

151 天前
 risan

1 万条训练出来的模型和 8 万条训练出来的性能差不多,个人认为这个模型能做到 18%已经是极限了。

1025 次点击
所在节点    程序员
4 条回复
Sawyerhou
151 天前
是说输入特征有 8 个吗?如果是,这么点输入没办法用神经网络拟合,树类模型应该都跑不满,直接多项式回归试试?
volvo007
151 天前
听起来应该有优化空间。我遇到的很多新手都是特别迷信模型,觉得好像用了一个模型就可以拯救世界。实际上数据清洗和特征工程占到了一般 ds 项目的 60% 甚至更多的时间。

去做做特征工程吧,不是简单的什么最大值、最小值、中位数,而是从业务角度出发看看有没有哪些特征是重要的

最近的一个例子是,乙方帮我们建模,也是搞了半天准确率上不去,还说就只能这样了。我一看,你这些数据前一个影响后一个,有因果关系,都不是独立同分布的搞毛。换了个思路,模型几乎没动,准确度马上提升一大截。
risan
150 天前
@Sawyerhou 属性有 8 个,总共有 9 万条这样的记录。
Sawyerhou
150 天前
@risan 数据量再大也没用啊,要不就像楼上哥们说的做下特征工程,扩充下输入数量。

而且 9 万也不够,神经网络数据量最小也要百万量级。

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1061257

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX