求一种快速搭建一套指定“老”环境的方法

4 天前
 shrugginG

需求是这样的,我平常需要做一些深度学习相关的实验,但是很多实验当时所使用的环境比较老旧,那么复现这类实验无非就是两个思路:

  1. 搭建出与当时实验相同的环境
  2. 使用新环境重构整个代码

以我上次的一次复现精力举例,比如说 https://github.com/Antimalweb/URLNet ,他对于实验环境的要求是:

最抓马的情况出现了,tf1.8 依赖的 cuda 版本非常低,如果我将当前 4090 的 cuda 版本切换到指定版本,n 卡驱动也是无法兼容的,因为是服务器我不可能直接为了这个实验直接重装系统,有一个直接使用 cuda 指定版本的 docker 镜像方法也是不可行的,因为他们底层依赖的 n 卡驱动还有 linux 内核无法兼容。 无奈我就使用了第二个思路,不过 tf2 与 tf1 的差异巨大,就算有 gpt 的加持,我重构整个代码也花了一整个周末,有一点得不偿失了。 所以想请问大家有没有什么能符合我需求,能够快速搭建一台指定需求环境的方法(我甚至能想到的是去 autodl 组一张卡,然后指定一个老版本的系统镜像)

232 次点击
所在节点    问与答
0 条回复

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1093984

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX