面向求职编程,目前国内使用最广泛的 AI AGENT 是哪些?

37 天前
ReinerShir  ReinerShir

目前已知的有低代码的 coze dify ,基于 python 的 langchian langgraph autogen

仅面向求职,研究哪个工具比较好?

1324 次点击
所在节点   问与答  问与答
4 条回复
TimePPT
TimePPT
37 天前
运营还是开发?应用开发小公司 dify ,langchain 会问。大公司即使做 LLM 应用开发,但如果不是专门做 Agent 平台开发的基本不会问这块,因为生产环境基本不用这些。
code0611
code0611
37 天前
@TimePPT 那大公司用啥
nbndco
nbndco
37 天前
你是说需要学习如何用 ai 编程?还是要开发 ai agent 平台?
TimePPT
TimePPT
37 天前
@code0611 大公司做业务 LLM 部署和应用部署都是微服务多些,业务逻辑层如果需要配置单抽出来做配置中心多些,dify coze 这种低代码可视化配置都是纯运营托管的场景才用的多,但大多数场景根本不会有专有运营天天整 workflow

这个也不是我说的,基本上是业界共识,Anthropic 官方 Agent 指南里也提到了类似观点
Building effective agents
https://www.anthropic.com/research/building-effective-agents

When and how to use frameworks
There are many frameworks that make agentic systems easier to implement, including:

– LangGraph from LangChain;
– Amazon Bedrock's AI Agent framework;
– Rivet, a drag and drop GUI LLM workflow builder; and
– Vellum, another GUI tool for building and testing complex workflows.

These frameworks make it easy to get started by simplifying standard low-level tasks like calling LLMs, defining and parsing tools, and chaining calls together. However, they often create extra layers of abstraction that can obscure the underlying prompts ​​and responses, making them harder to debug. They can also make it tempting to add complexity when a simpler setup would suffice.

We suggest that developers start by using LLM APIs directly: many patterns can be implemented in a few lines of code. If you do use a framework, ensure you understand the underlying code. Incorrect assumptions about what's under the hood are a common source of customer error.

See our cookbook for some sample implementations.

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/1113287

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX