简单的利用 Logistic 训练的因子模型 年化超额 alpha 超过 20%

2016-09-19 16:41:06 +08:00
 datayes2015
这个模型的思路就是利用历史月度数据建立分类器,选取了大概 20 个因子(继续加也没问题),然后以月度收益大于 25%的作为强势股+1 小于-10%的为弱势股-1 (这里用绝对强度而不是相对强度) 用得到的数据用 Logistic 模型训练,每过一期就把每个月的数据直接加到训练集里面,当然用滚动窗口训练也没问题(懒得做) 我也尝试过用 svm 分类,但是实际上效果并不好,据我做机器学习的同学表示, svm 在特征不够好的情况下 表现确实是还不如 logistic 模型的,这种二分类而因子模型本身不太可能做到样本外 80%以上的 AUC ,那太夸张了,所以似乎是 logistic 会好点,决策树我没试过 或者用 adaboost 或者随机森林什么的

当然模型还是有一点我想了很多办法也没法改进的问题:
1.首先,模型在市场风格急剧变化的情况下表现较差 在这里 牛熊变化的关口表现不好 波动性大 15 年股灾的的时候回测有差不多 45% 我本来想加个择时控制仓位的因子进去,但是怎么也选不好
2.对 1 里面的问题我还有一个思路,如果用随机梯度递减的算法是不是能较快反应出市场变化呢?不过这样的话训练集似乎太少了
3.可能会有点过拟合,但是并不会很明显,我改变参数回测了好几次,夏普比率都在 1 左右,最低也有 0.8 4.机器学习方法的通病就是逻辑性的不足,这里虽然是线性模型,也有一定这样的问题

总之这个模型还算稳定,基本上每年都可以获得超额收益,大家可以一起讨论改进

完整高清源代码请移步: https://uqer.io/community/share/5763ad63228e5b8199a55ebc
最大年化收益率高达 34.2%!

6193 次点击
所在节点    Python
23 条回复
lixuda
2016-10-19 17:27:15 +08:00
@grindsgears 完全同意
xieyingli
2016-10-19 17:35:04 +08:00
@grindsgears 哈哈哈,好有道理,感谢今天把这个帖子挖出来。
grindsgears
2016-10-19 18:51:15 +08:00
打错一个字。 是做多那个板块最强的股票同时做空同板块最弱的股票

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/307289

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX