今天想和大家分享一下如何利用 Python 拟合具有非平稳特征的神经网络,从而对股票进行预测。
中国建筑 - 601668.SH 中国交建 - 601800.SH 中国中铁 - 601390.SH 中国铁建 - 601186.SH 中国中冶 - 601618.SH 中国电建 - 601669.SH
import math
import numpy as np
import pandas as pd
import seaborn as sns
sns.set_style('whitegrid')
import sklearn.neural_network
from datetime import datetime
import matplotlib.pyplot as plt
from sklearn import preprocessing
from pandas import Series,DataFrame
from statsmodels.tsa.stattools import adfuller
from scipy.stats import norm, t, skew, kurtosis, kurtosistest, beta
对中国电建 - 601669.SH 进行预测
# 前复权数据
data = pd.read_csv('建筑.csv',index_col=0)
data.head(3).append(data.tail(3))
China_DJ = data['601669']
new_index = pd.to_datetime(China_DJ.index)
Y= Series(China_DJ.values,new_index)
Y.head(6)
#收益率
Y_pct = Y.pct_change()
Y_pct= Y_pct[1:].copy()
Y_pct.head()
#转换到 0 、 1
f = lambda x: 1 if x > 0 else -1
Y_pct = Y_pct.apply(f)
Y_pct.head()
Y_pct = Y_pct.shift(-1,freq='1d')
Y_pct.head()
#用 X 表示每日价格,来预测未来 601669 的收益
new_index1 = pd.to_datetime(data.index)
X = DataFrame(data.values,new_index1)
X.tail()
X = X[:-2]
X.index
Y.index
NN = sklearn.neural_network.MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(10, 5))
NN = NN.fit(X, Y)
NN
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 5), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)
NN.predict(X)
array([ 1, -1, -1, 1, 1, 1, 1, 1, -1, 1, 1, -1, -1, -1, -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, -1, -1, -1, -1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, 1, 1, 1, -1], dtype=int64)
def check_accuracy(predictions, Y):
correct = len(Y4[predictions == Y])
return correct / float(len(Y))
predictions = NN.predict(X)
check_accuracy(predictions, Y)
0.61
imputer = preprocessing.Imputer()
scaler = preprocessing.MinMaxScaler()
X = imputer.fit_transform(X)
X = scaler.fit_transform(X)
NN = NN.fit(X, Y)
NN
MLPClassifier(activation='relu', alpha=1e-05, batch_size='auto', beta_1=0.9, beta_2=0.999, early_stopping=False, epsilon=1e-08, hidden_layer_sizes=(10, 5), learning_rate='constant', learning_rate_init=0.001, max_iter=200, momentum=0.9, nesterovs_momentum=True, power_t=0.5, random_state=None, shuffle=True, solver='lbfgs', tol=0.0001, validation_fraction=0.1, verbose=False, warm_start=False)
NN.predict(X)
array([-1, -1, -1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, -1, 1, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 1, 1, -1, -1], dtype=int64)
predictions = NN.predict(X)
check_accuracy(predictions, Y4)
0.71
可以预测第二天的方向超过 71%的时间
# 前复权数据
OOS_pricing_data = pd.read_csv('建筑 2.csv',index_col=0)
OOS_pricing_data.head(3).append(OOS_pricing_data.tail(3))
Y1 = OOS_pricing_data['601669']
new_index = pd.to_datetime(Y1.index)
Y5 = Series(Y1.values,new_index)
Y5 = Y5.pct_change()
Y5 = Y5[1:]
Y5.head()
#转换到 0 、 1
f = lambda x: 1 if x > 0 else -1
Y5 = Y5.apply(f)
Y5.head()
Y5 = Y5.shift(-1,freq='1d')
Y5.head()
new_index2 = pd.to_datetime(OOS_pricing_data.index)
X11 = DataFrame(OOS_pricing_data.values,new_index2)
X11.head()
X11 = X11[:-1]
X11.index
Y5.index
X11 = imputer.fit_transform(X11)
X11 = scaler.fit_transform(X11)
OOS_predictions = NN.predict(X11)
check_accuracy(OOS_predictions, OOS_Y)
result: 0.5034013605442177
50%
只有 50%的准确率
可能是在不同时期之间的不稳定造成的,这导致学习神经网络,很适合现在的条件训练数据,但不适合在不同条件下测试数据。也有可能是神经网络是适合噪声而没有体现出真正的信号,很难讲。
new_index3 = pd.to_datetime(data.index)
Y6 = pd.DataFrame(data.values,new_index3)
Y6.columns = ['601668','601800','601390','601186','601618','601669']
Y6.head()
corr_df = pd.rolling_corr(Y6 , window=30)
corr_df
看看平稳性
fig = plt.figure(figsize=(16,8.5))
plt.plot(corr_df[:,'601668','601669'])
plt.plot(corr_df[:,'601800','601669'])
plt.plot(corr_df[:,'601390','601669'])
plt.plot(corr_df[:,'601186','601669'])
plt.plot(corr_df[:,'601618','601669'])
ts = corr_df[:, '601618','601669']
plt.hlines(ts.mean(), ts.index[30-1], ts.index[-1], linestyles='dashed')
plt.ylabel('Pearson Correlation Coefficient')
plt.legend(['601668 x 601669', '601800 x 601669', '601390 x 601669', '601186 x 601669', '601618 x 601669','601618 x 601669 AVG'])
adfuller(data['601668'])
adfuller(data['601800'])
adfuller(data['601390'])
adfuller(data['601186'])
adfuller(data['601618'])
adfuller(data['601669'])
源地址: https://uqer.io/community/share/587db6aa23a7d6004da3665b
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.