机器学习现在很火, 但有个疑问: 这跟普通程序员有多大关系? 或者说我们的价值在哪里

2017-01-27 04:16:24 +08:00
 eyp82

机器学习的算法, 基本就那几大类, 都是根据各种教授研究员们的论文出来的, 各种库也有了, 我们非科研人员能做的就是利用现有的深度学习 /机器学习的库给的 API, 拿一批种子数据训练一下, 然后拿另一批数据验证, 调一下参数. 然后呢? 普通程序员 /架构师在这方面的价值在哪里?

还请给专家指点.

16981 次点击
所在节点    程序员
47 条回复
cpygui
2017-01-28 16:20:04 +08:00
@snnn 卧槽,说到心坎了。有好几篇 paper 的算法我怎么搞也弄不出来,后来都怀疑到智商问题了。还好我朋友提醒我有些 paper 有坑
murmur
2017-01-28 17:54:23 +08:00
@lcqtdwj 自动驾驶的永远不是技术问题,是法律问题,没有立法搞清楚机器人驾车把人撞了算谁的,谁敢上无人驾驶
都以为是 B 公司用真人做 test case 啊
viator42
2017-01-28 20:47:17 +08:00
学起来需要姿势水平实在太高,入门的书都一大堆数学公式。
taowen
2017-01-28 23:17:11 +08:00
机器学习是需要大量离线和在线数据的。大部分搬砖的,就是把数据从一个地方搬运到另外一个地方。然后让这些数据更加遍历于在线和离线的机器决策。这就是一个搬砖的觉悟。
minvacai
2017-01-29 14:50:16 +08:00
@viator42 其实我觉得神经网络入门涉及的数学不算很深,就目前来看就是普通的工科涉及的那些数学书而已,不过要在机器学习这一块有大的斩获的话数学应该是越精越好吧,早知现在会做码农的话当年专业就选数学了
RockStar
2017-01-29 20:35:19 +08:00
我在机器学习研究生马上毕业了,说说法国的现状吧。现在做机器学习研究有两批人,一批是统计出身的,一批是计算机搞人工智能出身的,论出文章的数量和 citation 数量,统计出身是碾压计算机出身的。研究方向的话,我的老师都在 clustring 和神经网络。机器学习最后都转化为了 optimization 问题。本科学校时的大 boss 是 optimization 大牛,现在已成法国 svm 研究方向的领军人物。现在学过了机器学习之后,觉得这个学科对计算机出身的人并没有什么先天优势(我是计算机出身),比如物理出身的搞矩阵,做模型比计算机的有先天优势,现在机器学习语言 Python 和 R 学习曲线很友好,其他出身的很容易赶上来,而 R 语言对于物理出身的来说简直就是无缝衔接(语法很像 matlab )。对传统程序员的话,要补的东西太多了,矩阵,概率,统计,而每个机器学习模型后都是数学公式来定义的,补起来需要更长的时间。
Izual_Yang
2017-01-31 16:40:40 +08:00
@RockStar
说到统计出身,我突然想起来王小波当年就是教统计学的,还能自己写程序

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/337098

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX