为什么这部电影的豆瓣评分我不认可?—— 一点数据分析的视角

2017-06-16 14:14:42 +08:00
 cqcn1991

这是最近做的一篇分析,希望大家帮我看看,不知道有什么问题? 有什么建议也欢迎指出~, 原文在这里

源代码: https://github.com/cqcn1991/movie-compare

文中涉及的交互式散点图: https://cdn.rawgit.com/cqcn1991/movie-compare/master/clusters.html


不知道大家有没有这样的经历 —— 看了一部电影,但对豆瓣的评分并不认可

比如,之前看西游伏妖篇,我就很疑惑,为什么分数这么低?毕竟,周星驰是我很喜欢的导演

而且,评论区也出现了截然相反的评价

再比如最近的神奇女侠 Wonder Woman,虽然分数不错,但我并不觉得很好看

此外,一直以来也有“爱乐之城 /摔跤吧爸爸评分偏高了吗?”等类似的问题。所以,会想问 —— 为什么有的电影分数高 /低,但是我们并不认同?是不是豆瓣电影的分数有问题?

之前,从国内外评价差异的角度分析过,比如赤壁 /让子弹飞,国内外的评价并不一致,但还有没有别的原因?

1. 数据概况

选取 2008-2017, 国内公映的电影。限制豆瓣评分人数在 2W 以上,一方面讨论大家较为熟悉、主流的电影,另一方面也尽量减少水军等的影响。总共 815 部电影,评分分布如图

包括了很多大家熟悉的电影

2. 评分的差异

2.1 西游 vs. 杜拉拉

仔细观察西游的评分,会发现和相同评分的电影(杜拉拉升职记)的分布差别很大。

两者评分相同,评价人数也很多( 20W, 17W ),但 5 星和 1 星的比例差别很大[1]。

什么意思呢?

也就是说,尽管两者(平均)分数相同,但是背后的看法非常不同,评分差异很大,这也正好对应了上面,西游出现两种截然相反的热评的情况。

2.2 怎么衡量评分差异

评分分布的差异,可以用方差来衡量,计算方法如下

也就是计算 评分偏离平均分的程度。下文使用标准差( STD ),方差开方即可。可以做出标准差( STD ) - 豆瓣评分( Rating )散点分布图[2]。为了便于比较,做标准差 97%范围线。

可以看到西游和杜拉拉升职记的 STD 差别确实很大,西游的标准差排在前 3% ,争议性是巨大的,而杜拉拉则小很多。 另外,还发现散点图的有两个特点

对于收敛,可以从平均分怎么计算出来的角度理解:平均分越高,占高分的比例越大,因此评分差异较小。至于不对称,后面再说。

2.3 典型电影

这里,可以看到很多典型评价差异很大的电影,比如刺客聂隐娘一步之遥 等等都在这张图的上方,STD 很高

可以拿他们和 STD 较低的电影比较

这里可以问一个问题 —— 这些电影的分数相同,但同样好看 /不好看吗?

比如,刺客聂隐娘我 11的分数一样,但他们一样好看吗?

显然不是

和前面的比较类似,刺客聂隐娘虽然评分较高,但其 5 星 /1 星和我 11 差别很大。为什么呢?大家可能早有耳闻,看评论,也能看到

可能的原因,是刺客聂隐娘画面极具美感,但另一方面,剧情却让人看不懂。所以评分上出现了较大的分歧。一步之遥也是类似,算是比较有名的例子了。

爸爸去哪儿,也能从评论中看到一些端倪

可能的原因是,一方面是娱乐性优秀,带着小孩看电影的家长观众们觉得很好,另一方面,有人觉得这不是电影,纯属圈钱。

通常,我们总是在讨论一部电影评分的高低,但这只是平均分,当大家看法一致的时候,这个分数会很有参考价值。但当评分差异很大( STD 很大)的时候,这个分数的作用就有限了

3. 电影评分的形状

3.1 总共有几种形状?

从评分的分布,很容易想到关于评分形状的段子

那么,电影的评分,会有多少种形状呢?

可以用 K-Means 来做。实际可以分很细,这里简单分成 6 种,比较有代表性,结果如下图

[注,高 STD 的电影因为其形状差异很大,并不适用于这个分类]

这些分布,相当于电影评分的典型形状,两头和中间对应了大家熟知的 P, b 和钟形分布

这可以部分解释,为什么散点图是非对称的 —— 因为有很多 4 星为主的电影,但很少有 2 星为主的电影。毕竟,大多时候给的评价都是一般( 3 星),或烂片( 1 星),很少会有电影“精确烂到 2 星”。

每个形状下,也能看到 STD 高 /低的电影,比如魔兽,爱乐之城等等。

依然可以问这个问题 —— 这些电影分数相同,但是同样好看吗?

爱乐之城, 虽然评分和萨利机长一样,都算典型的好电影了,但是打 5 星的明显比萨利机长多,也侧面说明了为什么有人疑惑其分数“是否偏高”。魔兽,则可能有粉丝加成的影响。其他电影不再具体讨论,大家可以自己分析~

3.2 奇怪的形状

还有一些奇怪形状的电影,比如人间·小团圆,小时代 4, 长城,并不属于上述任何一种典型分布

这是为什么?

具体原因不得而知。但实际上,这是典型的混合分布的特征,也就是说,由几个分布叠加得到。

如果把最差评分和中等评分混合起来(各按 50%算),可以得到和上面非常相似的形状

那么,有没有可能真的是混合分布呢?

查看评论,不难发现,对于人间·小团圆,是 ZZ 因素导致了对其评分的极大差别。

小时代可能也是类似。有人看到郭小四就要打一星,另一方面,原著粉们则表示还算不错。

那么长城呢?可以查看近期的评价。需要注意的是,这时不太可能有水军了,因为这时候的分数对票房毫无意义。简单看一下前两页,发现 2-3 星居多

和当初的差评还是有差距的。更靠谱的当然是抓数据,不过豆瓣官方并没有公开相关的数据,这个以后有机会再补吧~ 延伸出来的问题是,恶评如流的电影,在下映之后,还会有那么多差评吗?

4. 总结

本文主要做了两件微小的工作

回到我们最开始的问题 —— 为什么有的电影分数高 /低,但是我们并不觉得如此?是分数有问题吗 ?

原因在于,那只是个平均分而已

而有意思的也在于此 —— 大多数人在谈论豆瓣的评分的时候,都知道这是平均分,也都能看到分数的分布情况。而且大多数时候,这个平均分是有效的,因为大家的评价较为接近( STD 较小)

但是,很少有人注意到评分的分歧大小(即 STD 的大小)。所以,当看到一部 STD 很大的电影,平均分和我们感受不符时,我们疑惑了,进而觉得豆瓣的评分有问题。实际上,只是因为人们的评价差异太大( STD 太大),使平均分失去了意义而已。


最后,我在想,有没有可能给豆瓣评分旁边加上一个小标签?比如,对 STD 特别大的电影,在旁边加个“分歧警告”标签,注明“这部电影的评价差异水平达到了前 3%,平均分的参考意义较为有限”, 进一步还可以分开展示好评 /差评,向用户解释评价差异具体如何。这样或许能减少一些人们对(平均)评分的疑虑。

然后,分析有什么疏漏或者没讲清楚的地方,也欢迎大家指出~

[1] 这里采用的是豆瓣的评分柱状图,画法并不标准(占比最大为定宽),但适用于基本的比较

[2] 实际 STD 的尺度没有这么大。这样画图类似于把 STD 做规整化,更方便于比较。

13990 次点击
所在节点    分享创造
112 条回复
wmzt
2017-06-16 14:17:44 +08:00
西游伏妖篇真的很烂。。
kokdemo
2017-06-16 14:37:53 +08:00
虽然有点标题党,但是内容不错有意思的。
ovear
2017-06-16 14:43:55 +08:00
内容不错啊,先支持 LZ 一波
cqcn1991
2017-06-16 14:51:43 +08:00
@kokdemo 完全没觉得标题党....怎么说?
codeforlife
2017-06-16 14:54:39 +08:00
不觉得标题到。楼主的分析非常不错,我要再慢慢看一遍
fffflyfish
2017-06-16 14:56:03 +08:00
有理有据,真不错
cnwtex
2017-06-16 14:57:56 +08:00
lz 写个 chrome 插件吧
chensuifu
2017-06-16 15:02:22 +08:00
口味不对。
而且,西游伏妖篇可以满分,硬是无视演员演技问题。单演技就要扣掉五分了好吧。
另外楼主适合看国产片,对欧美口味不感冒罢了。
各有所好。就像我永远无爱 batman 金刚狼这一类的。
ichubei
2017-06-16 15:04:14 +08:00
西游伏妖篇 烂,是剧情烂,无厘头的有点过分了。
chuanqirenwu
2017-06-16 15:06:11 +08:00
我一直有类似想法,做一个新的评分系统,综合各大电影平台的评分指标。豆瓣电影群体偏差太大了,比如只要有景甜的电影评分就低,毫无道理可言。
xdz0611
2017-06-16 15:06:48 +08:00
绘图用的什么工具啊 挺好看的
cqcn1991
2017-06-16 15:16:21 +08:00
@chensuifu @wmzt @ichubei
看来我有些内容没太说明白,已经 Append 到主贴里了

西游的问题是各方面差异太大了,表演很差,故事较差,但是画面想象力爆棚

所以,也就能看到大家评论的分化情况,因为大家对这方面的看重点是不一样的。

全文其实就一个意思 —— **不是“你的评分 /口味是错的”,“我的看法是对的”,而是“你的看法是对的”,“我的看法也是对的”,** 只是大家对这部电影的看法差别太大了(由于各种各样的原因)。

大多数时候,大家对电影的看法趋同,对于豆瓣电影的分数认可,是因为一部电影的各个方面较为平均,大家的看法也会比较一致。但是出现**西游**,**刺客聂隐娘**等等这类长 /短板差异明显的电影的时候,产生较大的差异,简单的平局分也就失效了
cqcn1991
2017-06-16 15:17:24 +08:00
@xdz0611 基本图表用的是 Matplotlib, 文章里面的辅助线是用 Axure (对你没看错),我自己加的
DearTanker
2017-06-16 15:21:25 +08:00
我可以理解楼主的大概意思。

简单说,即使评分相同,也不代表 2 部电影差不多。

如果是 P 型的高分电影,绝对不会很难看。

如果是 b 型的低分电影,绝对不会很好看。
bluecrow
2017-06-16 15:24:52 +08:00
评分这个东西本来就很主观,每个人想法不同。我看我的电影管别人怎么说。
oott123
2017-06-16 15:28:39 +08:00
好文。看完想给楼主打钱。
goophy
2017-06-16 15:29:16 +08:00
分析得详实,谢谢
viator42
2017-06-16 15:30:56 +08:00
还有一种神奇的 L 型电影
vitalbo
2017-06-16 15:31:13 +08:00
个人认为按照受众群体打分是比较靠谱的,可以解决这种分歧比较大的,选择一个 tag,比如说科幻,可以显示为主要看科幻片的影迷的打分,也比较符合科幻迷的口味;如果选择大众,那么分数有可能不一样,对打分群体的分类对解决分歧电影更有实际意义。
wmzt
2017-06-16 15:33:37 +08:00
@cqcn1991 不是怼 lz 的意思,觉得 lz 写的很好。仅仅表达下对西游的不满(个人口味不同吧,别在意)

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/368861

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX