计算机网络(computer networks)2.1.1 节 Fourier 分析,没看懂

2018-09-22 11:00:41 +08:00
 koebehshian

In the early 19th century, the French mathematician Jean-Baptiste Fourier proved that any reasonably behaved periodic function, g(t) with period T, can be constructed as the sum of a (possibly infinite) number of sines and cosines:

g(t) = (1/2)c + Σ(an sin(2πnft), n=1->∞) + Σ(bn cos(2πnft), n=1->∞) (2-1)

where f = 1/T is the fundamental frequency, an and bn are the sine and cosine amplitudes of the nth harmonics (terms), and c is a constant. Such a decomposition is called a Fourier series. From the Fourier series, the function can be reconstructed. That is, if the period, T, is known and the amplitudes are given, the original function of time can be found by performing the sums of Eq. (2-1).

A data signal that has a finite duration, which all of them do, can be handled by just imagining that it repeats the entire pattern over and over forever (i.e., the interval from T to 2T is the same as from 0 to T, etc.).

The an amplitudes can be computed for any given g(t) by multiplying both sides of Eq. (2-1) by sin(2πkft) and then integrating from 0 to T. Since

∫(sin(2πkft)sin(2πnft)dt, t=0->T) = { 0 for k ≠ n T/2 for k = n }

only one term of the summation survives: an. The bn summation vanishes completely. Similarly, by multiplying Eq. (2-1) by cos(2πkft) and integrating between 0 and T, we can derive bn. By just integrating both sides of the equation as it stands, we can find c. The results of performing these operations are as follows:

an = (2/T)∫(g(t)sin(2πnft)dt, t=0->T) bn = (2/T)∫(g(t)cos(2πnft)dt, t=0->T) c = (2/T)∫(g(t)dt, t=0->T)

公式(2-1)两边乘上 sin(2πkft),再对 t 从 0 到 T 积分,到底是怎么算出 an 的,公式(2-1)中还有常量 c,是怎么消掉的,原来还有 1 到无穷的求和,怎么也没了

11731 次点击
所在节点    数学
13 条回复
byaiu
2018-09-22 11:12:36 +08:00
这个是通信原理里的东西吧?找一本信号系统就都来了。
简单来说周期相差整数倍的 sin cos 相乘积分为 0。
koebehshian
2018-09-22 11:24:14 +08:00
@byaiu 那常量 c 是怎么消掉的
byaiu
2018-09-22 11:47:29 +08:00
c 并没有消掉呀😅
c 是信号中的直流分量
这段只是介绍了一下信号在频域上的表示,我猜这章是讲物理层的吧,ee 的会学这个
cs 学这个太硬核了
misaka19000
2018-09-22 11:53:22 +08:00
哈哈,想起了大学的时候被三大变换所支配的恐惧~
silhouette
2018-09-22 12:06:09 +08:00
来一本信号与系统
wheeler
2018-09-22 12:16:53 +08:00
wheeler
2018-09-22 12:26:27 +08:00
这本 https://book.douban.com/subject/21359219/ 写得非常棒。

PS.
网络不应该把重点放在这里呀。
feather12315
2018-09-22 12:30:35 +08:00
大兄弟你是不是考虑放张图片上来?你这公式写得不想让人看啊
lzhCoooder
2018-09-22 12:32:28 +08:00
不用看信号系统,你自己查查三角函数的正交性就明白了
c 是一个常数 乘以一个三角函数然后积分一个周期不管怎样都是 0...

大一上的内容....
koebehshian
2018-09-22 12:33:11 +08:00
@wheeler 我知道重点不是物理层,只是我比较喜欢探究原理。
koebehshian
2018-09-22 12:39:05 +08:00
@feather12315 本来有几个换行符的,被吞了。图片我还不会贴,就复制粘贴文字了,求和与积分,我扁平化成函数形式,逗号分隔。
koebehshian
2018-09-22 12:47:26 +08:00
@lzhCoooder 首先,公式 2-1 原来有个从 1 到无穷求和的,这个怎么没了
lzhCoooder
2018-09-22 13:14:13 +08:00
@koebehshian
我不知道你到底哪里不懂,我突然发现你连三角函数正交性都不需要查,∫(sin(2πkft)sin(2πnft)dt, t=0->T) = { 0 for k ≠ n T/2 for k = n }

书上已经写明白了,只有 k 等于 n 剩下 其他根据三角函数正交性都为 0,无穷多项都没用的

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/491727

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX