import cupy as cp
import numpy as np
x_cpu = np.random.randn(100, 100).astype(np.float32)
x_gpu = cp.asarray(x_cpu)
%%timeit
x_cpu*x_cpu
2.41 µs ± 19.7 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
x_gpu*x_gpu
14.3 µs ± 53.4 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
import torch
x_tensor = torch.from_numpy(x_cpu)
%%timeit
x_tensor*x_tensor
3.01 µs ± 33.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
x_gpu_tensor = x_tensor.cuda()
%%timeit
x_gpu_tensor*x_gpu_tensor
7.85 µs ± 13.9 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.