PyTorch 高级实战教程:基于 Bi-LSTM CRF 实现命名实体识别和中文分词

2019-04-12 20:05:05 +08:00
 fendouai_com

前言:实测 PyTorch 代码非常简洁易懂,只需要将中文分词的数据集预处理成作者提到的格式,即可很快的就迁移了这个代码到中文分词中,相关的代码后续将会分享。

具体的数据格式,这种方式并不适合处理很多的数据,但是对于 demo 来说非常友好,把英文改成中文,标签改成分词问题中的 “ BEMS ” 就可以跑起来了。

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

Pytorch 是一个动态神经网络工具包。 动态工具包的另一个例子是 Dynet (我之所以提到这一点,因为与 Pytorch 和 Dynet 的工作方式类似。如果你在 Dynet 中看到一个例子,它可能会帮助你在 Pytorch 中实现它)。 相反的是静态工具包,包括 Theano,Keras,TensorFlow 等。核心区别如下:

在静态工具箱中,您可以定义一次计算图,对其进行编译,然后将实例流式传输给它。 在动态工具包中,您可以为每个实例定义计算图。 它永远不会被编译并且是即时执行的。 动态工具包还有一个优点,那就是更容易调试,代码更像主机语言(我的意思是 pytorch 和 dynet 看起来更像实际的 python 代码,而不是 keras 或 theano )。

Bi-LSTM Conditional Random Field ( Bi-LSTM CRF ) 对于本节,我们将看到用于命名实体识别的 Bi-LSTM 条件随机场的完整复杂示例。 上面的 LSTM 标记符通常足以用于词性标注,但是像 CRF 这样的序列模型对于 NER 上的强大性能非常重要。 假设熟悉 CRF。 虽然这个名字听起来很可怕,但所有模型都是 CRF,但是 LSTM 提供了特征。 这是一个高级模型,比本教程中的任何早期模型复杂得多。

实现细节: 下面的例子在 log 空间中实现了计算微分函数的正向算法,以及要解码的维特比算法。反向传播将自动为我们计算梯度。我们不必用手做任何事。

这个算法用来演示,没有优化。如果您了解正在发生的事情,您可能会很快看到,在转发算法中迭代下一个标记可能是在一个大型操作中完成的。我想用代码来提高可读性。如果你想做相关的改变,你可以用这个标记器来完成真正的任务。

# Author: Robert Guthrie

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.optim as optim

torch.manual_seed(1)

帮助程序函数,使代码更具可读性。

def argmax(vec):
    # return the argmax as a python int
    _, idx = torch.max(vec, 1)
    return idx.item()


def prepare_sequence(seq, to_ix):
    idxs = [to_ix[w] for w in seq]
    return torch.tensor(idxs, dtype=torch.long)


# Compute log sum exp in a numerically stable way for the forward algorithm
def log_sum_exp(vec):
    max_score = vec[0, argmax(vec)]
    max_score_broadcast = max_score.view(1, -1).expand(1, vec.size()[1])
    return max_score + \
        torch.log(torch.sum(torch.exp(vec - max_score_broadcast)))

创建模型

class BiLSTM_CRF(nn.Module):

    def __init__(self, vocab_size, tag_to_ix, embedding_dim, hidden_dim):
        super(BiLSTM_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tag_to_ix = tag_to_ix
        self.tagset_size = len(tag_to_ix)

        self.word_embeds = nn.Embedding(vocab_size, embedding_dim)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2,
                            num_layers=1, bidirectional=True)

        # Maps the output of the LSTM into tag space.
        self.hidden2tag = nn.Linear(hidden_dim, self.tagset_size)

        # Matrix of transition parameters.  Entry i,j is the score of
        # transitioning *to* i *from* j.
        self.transitions = nn.Parameter(
            torch.randn(self.tagset_size, self.tagset_size))

        # These two statements enforce the constraint that we never transfer
        # to the start tag and we never transfer from the stop tag
        self.transitions.data[tag_to_ix[START_TAG], :] = -10000
        self.transitions.data[:, tag_to_ix[STOP_TAG]] = -10000

        self.hidden = self.init_hidden()

    def init_hidden(self):
        return (torch.randn(2, 1, self.hidden_dim // 2),
                torch.randn(2, 1, self.hidden_dim // 2))

    def _forward_alg(self, feats):
        # Do the forward algorithm to compute the partition function
        init_alphas = torch.full((1, self.tagset_size), -10000.)
        # START_TAG has all of the score.
        init_alphas[0][self.tag_to_ix[START_TAG]] = 0.

        # Wrap in a variable so that we will get automatic backprop
        forward_var = init_alphas

        # Iterate through the sentence
        for feat in feats:
            alphas_t = []  # The forward tensors at this timestep
            for next_tag in range(self.tagset_size):
                # broadcast the emission score: it is the same regardless of
                # the previous tag
                emit_score = feat[next_tag].view(
                    1, -1).expand(1, self.tagset_size)
                # the ith entry of trans_score is the score of transitioning to
                # next_tag from i
                trans_score = self.transitions[next_tag].view(1, -1)
                # The ith entry of next_tag_var is the value for the
                # edge (i -> next_tag) before we do log-sum-exp
                next_tag_var = forward_var + trans_score + emit_score
                # The forward variable for this tag is log-sum-exp of all the
                # scores.
                alphas_t.append(log_sum_exp(next_tag_var).view(1))
            forward_var = torch.cat(alphas_t).view(1, -1)
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        alpha = log_sum_exp(terminal_var)
        return alpha

    def _get_lstm_features(self, sentence):
        self.hidden = self.init_hidden()
        embeds = self.word_embeds(sentence).view(len(sentence), 1, -1)
        lstm_out, self.hidden = self.lstm(embeds, self.hidden)
        lstm_out = lstm_out.view(len(sentence), self.hidden_dim)
        lstm_feats = self.hidden2tag(lstm_out)
        return lstm_feats

    def _score_sentence(self, feats, tags):
        # Gives the score of a provided tag sequence
        score = torch.zeros(1)
        tags = torch.cat([torch.tensor([self.tag_to_ix[START_TAG]], dtype=torch.long), tags])
        for i, feat in enumerate(feats):
            score = score + \
                self.transitions[tags[i + 1], tags[i]] + feat[tags[i + 1]]
        score = score + self.transitions[self.tag_to_ix[STOP_TAG], tags[-1]]
        return score

    def _viterbi_decode(self, feats):
        backpointers = []

        # Initialize the viterbi variables in log space
        init_vvars = torch.full((1, self.tagset_size), -10000.)
        init_vvars[0][self.tag_to_ix[START_TAG]] = 0

        # forward_var at step i holds the viterbi variables for step i-1
        forward_var = init_vvars
        for feat in feats:
            bptrs_t = []  # holds the backpointers for this step
            viterbivars_t = []  # holds the viterbi variables for this step

            for next_tag in range(self.tagset_size):
                # next_tag_var[i] holds the viterbi variable for tag i at the
                # previous step, plus the score of transitioning
                # from tag i to next_tag.
                # We don't include the emission scores here because the max
                # does not depend on them (we add them in below)
                next_tag_var = forward_var + self.transitions[next_tag]
                best_tag_id = argmax(next_tag_var)
                bptrs_t.append(best_tag_id)
                viterbivars_t.append(next_tag_var[0][best_tag_id].view(1))
            # Now add in the emission scores, and assign forward_var to the set
            # of viterbi variables we just computed
            forward_var = (torch.cat(viterbivars_t) + feat).view(1, -1)
            backpointers.append(bptrs_t)

        # Transition to STOP_TAG
        terminal_var = forward_var + self.transitions[self.tag_to_ix[STOP_TAG]]
        best_tag_id = argmax(terminal_var)
        path_score = terminal_var[0][best_tag_id]

        # Follow the back pointers to decode the best path.
        best_path = [best_tag_id]
        for bptrs_t in reversed(backpointers):
            best_tag_id = bptrs_t[best_tag_id]
            best_path.append(best_tag_id)
        # Pop off the start tag (we dont want to return that to the caller)
        start = best_path.pop()
        assert start == self.tag_to_ix[START_TAG]  # Sanity check
        best_path.reverse()
        return path_score, best_path

    def neg_log_likelihood(self, sentence, tags):
        feats = self._get_lstm_features(sentence)
        forward_score = self._forward_alg(feats)
        gold_score = self._score_sentence(feats, tags)
        return forward_score - gold_score

    def forward(self, sentence):  # dont confuse this with _forward_alg above.
        # Get the emission scores from the BiLSTM
        lstm_feats = self._get_lstm_features(sentence)

        # Find the best path, given the features.
        score, tag_seq = self._viterbi_decode(lstm_feats)
        return score, tag_seq

开始训练

START_TAG = "<START>"
STOP_TAG = "<STOP>"
EMBEDDING_DIM = 5
HIDDEN_DIM = 4

# Make up some training data
training_data = [(
    "the wall street journal reported today that apple corporation made money".split(),
    "B I I I O O O B I O O".split()
), (
    "georgia tech is a university in georgia".split(),
    "B I O O O O B".split()
)]

word_to_ix = {}
for sentence, tags in training_data:
    for word in sentence:
        if word not in word_to_ix:
            word_to_ix[word] = len(word_to_ix)

tag_to_ix = {"B": 0, "I": 1, "O": 2, START_TAG: 3, STOP_TAG: 4}

model = BiLSTM_CRF(len(word_to_ix), tag_to_ix, EMBEDDING_DIM, HIDDEN_DIM)
optimizer = optim.SGD(model.parameters(), lr=0.01, weight_decay=1e-4)

# Check predictions before training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    precheck_tags = torch.tensor([tag_to_ix[t] for t in training_data[0][1]], dtype=torch.long)
    print(model(precheck_sent))

# Make sure prepare_sequence from earlier in the LSTM section is loaded
for epoch in range(
        300):  # again, normally you would NOT do 300 epochs, it is toy data
    for sentence, tags in training_data:
        # Step 1. Remember that Pytorch accumulates gradients.
        # We need to clear them out before each instance
        model.zero_grad()

        # Step 2. Get our inputs ready for the network, that is,
        # turn them into Tensors of word indices.
        sentence_in = prepare_sequence(sentence, word_to_ix)
        targets = torch.tensor([tag_to_ix[t] for t in tags], dtype=torch.long)

        # Step 3. Run our forward pass.
        loss = model.neg_log_likelihood(sentence_in, targets)

        # Step 4. Compute the loss, gradients, and update the parameters by
        # calling optimizer.step()
        loss.backward()
        optimizer.step()

# Check predictions after training
with torch.no_grad():
    precheck_sent = prepare_sequence(training_data[0][0], word_to_ix)
    print(model(precheck_sent))
# We got it!

输出

(tensor(2.6907), [1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1])
(tensor(20.4906), [0, 1, 1, 1, 2, 2, 2, 0, 1, 2, 2])

我们没有必要在进行解码时创建计算图,因为我们不会从维特比路径得分反向传播。 因为无论如何我们都有它,尝试训练标记器,其中损失函数是维特比路径得分和测试标准路径得分之间的差异。 应该清楚的是,当预测的标签序列是正确的标签序列时,该功能是非负的和 0。 这基本上是结构感知器。

由于已经实现了 Viterbi 和 score_sentence,因此这种修改应该很短。 这是取决于训练实例的计算图形的示例。 虽然我没有尝试在静态工具包中实现它,但我想它可能但不那么直截了当。

拿起一些真实数据并进行比较!

原文链接: https://pytorch.org/tutorials/beginner/nlp/advanced_tutorial.html#advanced-making-dynamic-decisions-and-the-bi-lstm-crf

更多 PyTorch 实战教程: http://pytorchchina.com/

5040 次点击
所在节点    Python
3 条回复
diggerdu
2019-04-12 23:12:40 +08:00
写的不错
oblivious
2019-04-12 23:34:40 +08:00
NICE WORK!

但是有一个小问题:这好像不是中文分词,是我理解错了吗 > <
fendouai_com
2019-04-16 09:57:01 +08:00
@oblivious 这个是 NER,可以迁移到中文分词,文章开头有提到迁移的思路。

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/554597

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX