在 Kubernetes 中,通常 kube-schduler 和 kube-controller-manager 都是多副本进行部署的来保证高可用,而真正在工作的实例其实只有一个。这里就利用到 leaderelection
的选主机制,保证 leader 是处于工作状态,并且在 leader 挂掉之后,从其他节点选取新的 leader 保证组件正常工作。
不单单只是 k8s 中的这两个组件用到,在其他服务中也可以看到这个包的使用,比如cluster-autoscaler等都能看得到这个包的,今天就来看看这个包的使用以及它内部是如何实现的。
以下是一个简单使用的例子,编译完成之后同时启动多个进程,但是只有一个进程在工作,当把 leader 进程 kill 掉之后,会重新选举出一个 leader 进行工作,即执行其中的 run
方法:
/*
例子来源于 client-go 中的 example 包中
*/
package main
import (
"context"
"flag"
"os"
"os/signal"
"syscall"
"time"
"github.com/google/uuid"
metav1 "k8s.io/apimachinery/pkg/apis/meta/v1"
clientset "k8s.io/client-go/kubernetes"
"k8s.io/client-go/rest"
"k8s.io/client-go/tools/clientcmd"
"k8s.io/client-go/tools/leaderelection"
"k8s.io/client-go/tools/leaderelection/resourcelock"
"k8s.io/klog"
)
func buildConfig(kubeconfig string) (*rest.Config, error) {
if kubeconfig != "" {
cfg, err := clientcmd.BuildConfigFromFlags("", kubeconfig)
if err != nil {
return nil, err
}
return cfg, nil
}
cfg, err := rest.InClusterConfig()
if err != nil {
return nil, err
}
return cfg, nil
}
func main() {
klog.InitFlags(nil)
var kubeconfig string
var leaseLockName string
var leaseLockNamespace string
var id string
flag.StringVar(&kubeconfig, "kubeconfig", "", "absolute path to the kubeconfig file")
flag.StringVar(&id, "id", uuid.New().String(), "the holder identity name")
flag.StringVar(&leaseLockName, "lease-lock-name", "", "the lease lock resource name")
flag.StringVar(&leaseLockNamespace, "lease-lock-namespace", "", "the lease lock resource namespace")
flag.Parse()
if leaseLockName == "" {
klog.Fatal("unable to get lease lock resource name (missing lease-lock-name flag).")
}
if leaseLockNamespace == "" {
klog.Fatal("unable to get lease lock resource namespace (missing lease-lock-namespace flag).")
}
// leader election uses the Kubernetes API by writing to a
// lock object, which can be a LeaseLock object (preferred),
// a ConfigMap, or an Endpoints (deprecated) object.
// Conflicting writes are detected and each client handles those actions
// independently.
config, err := buildConfig(kubeconfig)
if err != nil {
klog.Fatal(err)
}
client := clientset.NewForConfigOrDie(config)
run := func(ctx context.Context) {
// complete your controller loop here
klog.Info("Controller loop...")
select {}
}
// use a Go context so we can tell the leaderelection code when we
// want to step down
ctx, cancel := context.WithCancel(context.Background())
defer cancel()
// listen for interrupts or the Linux SIGTERM signal and cancel
// our context, which the leader election code will observe and
// step down
ch := make(chan os.Signal, 1)
signal.Notify(ch, os.Interrupt, syscall.SIGTERM)
go func() {
<-ch
klog.Info("Received termination, signaling shutdown")
cancel()
}()
// we use the Lease lock type since edits to Leases are less common
// and fewer objects in the cluster watch "all Leases".
// 指定锁的资源对象,这里使用了 Lease 资源,还支持 configmap,endpoint,或者 multilock(即多种配合使用)
lock := &resourcelock.LeaseLock{
LeaseMeta: metav1.ObjectMeta{
Name: leaseLockName,
Namespace: leaseLockNamespace,
},
Client: client.CoordinationV1(),
LockConfig: resourcelock.ResourceLockConfig{
Identity: id,
},
}
// start the leader election code loop
leaderelection.RunOrDie(ctx, leaderelection.LeaderElectionConfig{
Lock: lock,
// IMPORTANT: you MUST ensure that any code you have that
// is protected by the lease must terminate **before**
// you call cancel. Otherwise, you could have a background
// loop still running and another process could
// get elected before your background loop finished, violating
// the stated goal of the lease.
ReleaseOnCancel: true,
LeaseDuration: 60 * time.Second,//租约时间
RenewDeadline: 15 * time.Second,//更新租约的
RetryPeriod: 5 * time.Second,//非 leader 节点重试时间
Callbacks: leaderelection.LeaderCallbacks{
OnStartedLeading: func(ctx context.Context) {
//变为 leader 执行的业务代码
// we're notified when we start - this is where you would
// usually put your code
run(ctx)
},
OnStoppedLeading: func() {
// 进程退出
// we can do cleanup here
klog.Infof("leader lost: %s", id)
os.Exit(0)
},
OnNewLeader: func(identity string) {
//当产生新的 leader 后执行的方法
// we're notified when new leader elected
if identity == id {
// I just got the lock
return
}
klog.Infof("new leader elected: %s", identity)
},
},
})
}
关键启动参数说明:
kubeconfig: 指定 kubeconfig 文件地址
lease-lock-name:指定 lock 的名称
lease-lock-namespace:指定 lock 存储的 namespace
id: 例子中提供的区别参数,用于区分实例
logtostderr:klog 提供的参数,指定 log 输出到控制台
v: 指定日志输出级别
同时启动两个进程:
启动进程 1:
go run main.go -kubeconfig=/Users/silenceper/.kube/config -logtostderr=true -lease-lock-name=example -lease-lock-namespace=default -id=1 -v=4
I0215 19:56:37.049658 48045 leaderelection.go:242] attempting to acquire leader lease default/example...
I0215 19:56:37.080368 48045 leaderelection.go:252] successfully acquired lease default/example
I0215 19:56:37.080437 48045 main.go:87] Controller loop...
启动进程 2:
➜ leaderelection git:(master) ✗ go run main.go -kubeconfig=/Users/silenceper/.kube/config -logtostderr=true -lease-lock-name=example -lease-lock-namespace=default -id=2 -v=4
I0215 19:57:35.870051 48791 leaderelection.go:242] attempting to acquire leader lease default/example...
I0215 19:57:35.894735 48791 leaderelection.go:352] lock is held by 1 and has not yet expired
I0215 19:57:35.894769 48791 leaderelection.go:247] failed to acquire lease default/example
I0215 19:57:35.894790 48791 main.go:151] new leader elected: 1
I0215 19:57:44.532991 48791 leaderelection.go:352] lock is held by 1 and has not yet expired
I0215 19:57:44.533028 48791 leaderelection.go:247] failed to acquire lease default/example
这里可以看出来 id=1 的进程持有锁,并且运行的程序,而 id=2 的进程表示无法获取到锁,在不断的进程尝试。
现在 kill 掉 id=1 进程,在等待 lock 释放之后(有个 LeaseDuration 时间),leader 变为 id=2 的进程执行工作
I0215 20:01:41.489300 48791 leaderelection.go:252] successfully acquired lease default/example
I0215 20:01:41.489577 48791 main.go:87] Controller loop...
基本原理其实就是利用通过 Kubernetes 中 configmap
, endpoints
或者 lease
资源实现一个分布式锁,抢(acqure)到锁的节点成为 leader,并且定期更新( renew )。其他进程也在不断的尝试进行抢占,抢占不到则继续等待下次循环。当 leader 节点挂掉之后,租约到期,其他节点就成为新的 leader。
通过 leaderelection.RunOrDie
启动,
func RunOrDie(ctx context.Context, lec LeaderElectionConfig) {
le, err := NewLeaderElector(lec)
if err != nil {
panic(err)
}
if lec.WatchDog != nil {
lec.WatchDog.SetLeaderElection(le)
}
le.Run(ctx)
}
传入参数 LeaderElectionConfig
:
type LeaderElectionConfig struct {
// Lock 的类型
Lock rl.Interface
//持有锁的时间
LeaseDuration time.Duration
//在更新租约的超时时间
RenewDeadline time.Duration
//竞争获取锁的时间
RetryPeriod time.Duration
//状态变化时执行的函数,支持三种:
//1、OnStartedLeading 启动是执行的业务代码
//2、OnStoppedLeading leader 停止执行的方法
//3、OnNewLeader 当产生新的 leader 后执行的方法
Callbacks LeaderCallbacks
//进行监控检查
// WatchDog is the associated health checker
// WatchDog may be null if its not needed/configured.
WatchDog *HealthzAdaptor
//leader 退出时,是否执行 release 方法
ReleaseOnCancel bool
// Name is the name of the resource lock for debugging
Name string
}
LeaderElectionConfig.lock
支持保存在以下三种资源中:configmap
endpoint
lease
包中还提供了一个 multilock
,即可以进行选择两种,当其中一种保存失败时,选择第二张
可以在interface.go中看到:
switch lockType {
case EndpointsResourceLock://保存在 endpoints
return endpointsLock, nil
case ConfigMapsResourceLock://保存在 configmaps
return configmapLock, nil
case LeasesResourceLock://保存在 leases
return leaseLock, nil
case EndpointsLeasesResourceLock://优先尝试保存在 endpoint 失败时保存在 lease
return &MultiLock{
Primary: endpointsLock,
Secondary: leaseLock,
}, nil
case ConfigMapsLeasesResourceLock://优先尝试保存在 configmap,失败时保存在 lease
return &MultiLock{
Primary: configmapLock,
Secondary: leaseLock,
}, nil
default:
return nil, fmt.Errorf("Invalid lock-type %s", lockType)
}
以 lease 资源对象为例,可以在查看到保存的内容:
➜ ~ kubectl get lease example -n default -o yaml
apiVersion: coordination.k8s.io/v1
kind: Lease
metadata:
creationTimestamp: "2020-02-15T11:56:37Z"
name: example
namespace: default
resourceVersion: "210675"
selfLink: /apis/coordination.k8s.io/v1/namespaces/default/leases/example
uid: a3470a06-6fc3-42dc-8242-9d6cebdf5315
spec:
acquireTime: "2020-02-15T12:01:41.476971Z"//获得锁时间
holderIdentity: "2"//持有锁进程的标识
leaseDurationSeconds: 60//lease 租约
leaseTransitions: 1//leader 更换次数
renewTime: "2020-02-15T12:05:37.134655Z"//更新租约的时间
关注其 spec 中的字段,分别进行标注,对应结构体如下:
type LeaderElectionRecord struct {
HolderIdentity string `json:"holderIdentity"`//持有锁进程的标识,一般可以利用主机名
LeaseDurationSeconds int `json:"leaseDurationSeconds"`// lock 的租约
AcquireTime metav1.Time `json:"acquireTime"`//持有锁的时间
RenewTime metav1.Time `json:"renewTime"`//更新时间
LeaderTransitions int `json:"leaderTransitions"`//leader 更换的次数
}
Run 方法中包含了获取锁以及更新锁的入口
// Run starts the leader election loop
func (le *LeaderElector) Run(ctx context.Context) {
defer func() {
//进行退出执行
runtime.HandleCrash()
//停止时执行回调方法
le.config.Callbacks.OnStoppedLeading()
}()
//不断的进行获得锁,如果获得锁成功则执行后面的方法,否则不断的进行重试
if !le.acquire(ctx) {
return // ctx signalled done
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
//获取锁成功,当前进程变为 leader,执行回调函数中的业务代码
go le.config.Callbacks.OnStartedLeading(ctx)
//不断的循环进行进行租约的更新,保证锁一直被当前进行持有
le.renew(ctx)
}
le.acquire
和 le.renew
内部都是调用了 le.tryAcquireOrRenew
函数,只是对于返回结果的处理不一样。
le.acquire
对于 le.tryAcquireOrRenew
返回成功则退出,失败则继续。
le.renew
则相反,成功则继续,失败则退出。
我们来看看 tryAcquireOrRenew
方法:
func (le *LeaderElector) tryAcquireOrRenew() bool {
now := metav1.Now()
//锁资源对象内容
leaderElectionRecord := rl.LeaderElectionRecord{
HolderIdentity: le.config.Lock.Identity(),//唯一标识
LeaseDurationSeconds: int(le.config.LeaseDuration / time.Second),
RenewTime: now,
AcquireTime: now,
}
// 1. obtain or create the ElectionRecord
// 第一步:从 k8s 资源中获取原有的锁
oldLeaderElectionRecord, oldLeaderElectionRawRecord, err := le.config.Lock.Get()
if err != nil {
if !errors.IsNotFound(err) {
klog.Errorf("error retrieving resource lock %v: %v", le.config.Lock.Describe(), err)
return false
}
//资源对象不存在,进行锁资源创建
if err = le.config.Lock.Create(leaderElectionRecord); err != nil {
klog.Errorf("error initially creating leader election record: %v", err)
return false
}
le.observedRecord = leaderElectionRecord
le.observedTime = le.clock.Now()
return true
}
// 2. Record obtained, check the Identity & Time
// 第二步,对比存储在 k8s 中的锁资源与上一次获取的锁资源是否一致
if !bytes.Equal(le.observedRawRecord, oldLeaderElectionRawRecord) {
le.observedRecord = *oldLeaderElectionRecord
le.observedRawRecord = oldLeaderElectionRawRecord
le.observedTime = le.clock.Now()
}
//判断持有的锁是否到期以及是否被自己持有
if len(oldLeaderElectionRecord.HolderIdentity) > 0 &&
le.observedTime.Add(le.config.LeaseDuration).After(now.Time) &&
!le.IsLeader() {
klog.V(4).Infof("lock is held by %v and has not yet expired", oldLeaderElectionRecord.HolderIdentity)
return false
}
// 3. We're going to try to update. The leaderElectionRecord is set to it's default
// here. Let's correct it before updating.
//第三步:自己现在是 leader,但是分两组情况,上一次也是 leader 和首次变为 leader
if le.IsLeader() {
//自己本身就是 leader 则不需要更新 AcquireTime 和 LeaderTransitions
leaderElectionRecord.AcquireTime = oldLeaderElectionRecord.AcquireTime
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions
} else {
//首次自己变为 leader 则更新 leader 的更换次数
leaderElectionRecord.LeaderTransitions = oldLeaderElectionRecord.LeaderTransitions + 1
}
//更新锁资源,这里如果在 Get 和 Update 之间有变化,将会更新失败
// update the lock itself
if err = le.config.Lock.Update(leaderElectionRecord); err != nil {
klog.Errorf("Failed to update lock: %v", err)
return false
}
le.observedRecord = leaderElectionRecord
le.observedTime = le.clock.Now()
return true
}
在这一步如果发生并发操作怎么样?
这里很重要一点就是利用到了 k8s api 操作的原子性:
在 le.config.Lock.Get()
中会获取到锁的对象,其中有一个 resourceVersion
字段用于标识一个资源对象的内部版本,每次更新操作都会更新其值。如果一个更新操作附加上了 resourceVersion
字段,那么 apiserver 就会通过验证当前 resourceVersion
的值与指定的值是否相匹配来确保在此次更新操作周期内没有其他的更新操作,从而保证了更新操作的原子性。
leaderelection 主要是利用了 k8s API 操作的原子性实现了一个分布式锁,在不断的竞争中进行选举。选中为 leader 的进行才会执行具体的业务代码,这在 k8s 中非常的常见,而且我们很方便的利用这个包完成组件的编写,从而实现组件的高可用,比如部署为一个多副本的 Deployment,当 leader 的 pod 退出后会重新启动,可能锁就被其他 pod 获取继续执行。
完整代码: https://github.com/go-demo/leaderelection
这是我的个人公众号,欢迎关注下
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.