分布式图数据库 Nebula Graph 的 Index 实践

2020-03-12 11:37:38 +08:00
 NebulaGraph

导读

索引是数据库系统中不可或缺的一个功能,数据库索引好比是书的目录,能加快数据库的查询速度,其实质是数据库管理系统中一个排序的数据结构。不同的数据库系统有不同的排序结构,目前常见的索引实现类型如 B-Tree index、B+-Tree index、B*-Tree index、Hash index、Bitmap index、Inverted index 等等,各种索引类型都有各自的排序算法。

虽然索引可以带来更高的查询性能,但是也存在一些缺点,例如:

Nebula Graph 作为一个高性能的分布式图数据库,对于属性值的高性能查询,同样也实现了索引功能。本文将对 Nebula Graph 的索引功能做一个详细介绍。

图数据库 Nebula Graph 术语

开始之前,这里罗列一些可能会使用到的图数据库和 Nebula Graph 专有术语:

索引需求分析

Nebula Graph 是一个图数据库系统,查询场景一般是由一个点出发,找出指定边类型的相关点的集合,以此类推进行(广度优先遍历) N 度查询。另一种查询场景是给定一个属性值,找出符合这个属性值的所有的点或边。在后面这种场景中,需要对属性值进行高性能的扫描,查出与此属性值对应的边或点,以及边或点上的其它属性。为了提高属性值的查询效率,在这里引入了索引的功能。对边或点的属性值进行排序,以便快速的定位到某个属性上。以此避免了全表扫描。

可以看到对图数据库 Nebula Graph 的索引要求:

系统架构概览

图数据库 Nebula Graph 存储架构

从架构图可以看到,每个 Storage Server 中可以包含多个 Storage Engine, 每个 Storage Engine 中可以包含多个 Partition, 不同的 Partition 之间通过 Raft 协议进行一致性同步。每个 Partition 中既包含了 data,也包含了 index,同一个点或边的 data 和 index 将被存储到同一个 Partition 中。

业务具体分析

数据存储结构

为了更好的描述索引的存储结构,这里将图数据库 Nebula Graph 原始数据的存储结构一起拿出来分析下。

点的存储结构

点的 Data 结构

点的 Index 结构

Vertex 的索引结构如上表所示,下面来详细地讲述下字段:

PartitionId:一个点的数据和索引在逻辑上是存放到同一个分区中的。之所以这么做的原因主要有两点:

  1. 当扫描索引时,根据索引的 key 能快速地获取到同一个分区中的点 data,这样就可以方便地获取这个点的任何一种属性值,即使这个属性列不属于本索引。
  2. 目前 edge 的存储是由起点的 ID Hash 分布,换句话说,一个点的出边存储在哪是由该点的 VertexId 决定的,这个点和它的出边如果被存储到同一个 partition 中,点的索引扫描能快速地定位该点的出边。

IndexId:index 的识别码,通过 indexId 可获取指定 index 的元数据信息,例如:index 所关联的 TagId,index 所在列的信息。

Index binary:index 的核心存储结构,是所有 index 相关列属性值的字节编码,详细结构将在本文的 #Index binary# 章节中讲解。

VertexId:点的识别码,在实际的 data 中,一个点可能会有不同 version 的多行数据。但是在 index 中,index 没有 Version 的概念,index 始终与最新 Version 的 Tag 所对应

上面讲完字段,我们来简单地实践分析一波:

假设 PartitionId 为 _100,TagId 有 tag_1 tag_2,_其中 tag_1 包含三列 :col_t1_1、col_t1_2、col_t1_3,tag_2 包含两列:col_t2_1、col_t2_2。

现在我们来创建索引:

可以看到虽然 tag_1 中有 col_t1_3 这列,但是建立索引的时候并没有使用到 col_t1_3,因为在图数据库 Nebula Graph 中索引可以基于 Tag 的一列或多列进行创建

插入点
// VertexId = hash("v_t1_1"),假如为 50 
INSERT VERTEX tag_1(col_t1_1, col_t1_2, col_t1_3), tag_2(col_t2_1, col_t2_2) \
   VALUES hash("v_t1_1"):("v_t1_1", "v_t1_2", "v_t1_3", "v_t2_1", "v_t2_2");

从上可以看到 VertexId 可由 ID 标识对应的数值经过 Hash 得到,如果标识对应的数值本身已经为 int64,则无需进行 Hash 或者其他转化数值为 int64 的运算。而此时数据存储如下:

此时点的 Data 结构

此时点的 Index 结构

说明:index 中 row 和 key 是一个概念,为索引的唯一标识;

边的存储结构

边的索引结构和点索引结构原理类似,这里不再赘述。但有一点需要说明,为了使索引 key 的唯一性成立,索引的 key 的生成借助了不少 data 中的元素,例如 VertexId、SrcVertexId、Rank 等,这也是为什么点索引中并没有 TagId 字段(边索引中也没有 EdgeType 字段),这是因为** IndexId 本身带有 VertexId 等信息可直接区分具体的 tagId 或 EdgeType**。

边的 Data 结构

边的 Index 结构

Index binary 介绍

Index binary 是 index 的核心字段,在 index binary 中区分定长字段和不定长字段,int、double、bool 为定长字段,string 则为不定长字段。由于** index binary 是将所有 index column 的属性值编码连接存储**,为了精确地定位不定长字段,Nebula Graph 在 index binary 末尾用 int32 记录了不定长字段的长度。

举个例子:

我们现在有一个 index binary 为 index1,是由 int 类型的索引列 1 c1、string 类型的索引列 c2,string 类型的索引列 c3 组成:

index1 (c1:int, c2:string, c3:string)

假如索引列 c1、c2、c3 某一行对应的 property 值分别为:23、"abc"、"here",则在 index1 中这些索引列将被存储为如下(在示例中为了便于理解,我们直接用原值,实际存储中是原值会经过编码再存储):

所以 index1 该 row 对应的 key 则为 23abchere34 ;

回到我们 Index binary 章节开篇说的 index binary 格式中存在 Variable-length field lenght 字段,那么这个字段的的具体作用是什么呢?我们来简单地举个例:

现在我们又有了一个 index binary,我们给它取名为 index2,它由 string 类型的索引列 1 c1、string 类型的索引列 c2,string 类型的索引列 c3 组成:

index2 (c1:string, c2:string, c3:string)

假设我们现在 c1、c2、c3 分别有两组如下的数值:

可以看到这两行的 prefix (上图红色部分)是相同,都是 "ababab",这时候怎么区分这两个 row 的 index binary 的 key 呢?别担心,我们有 Variable-length field lenght 。

若遇到 where c1 == "ab" 这样的条件查询语句,在 Variable-length field length 中可直接根据顺序读取出 c1 的长度,再根据这个长度取出 row1 和 row2 中 c1 的值,分别是 "ab" 和 "aba" ,这样我们就精准地判断出只有 row1 中的 "ab" 是符合查询条件的。

索引的处理逻辑

Index write

当 Tag / Edge 中的一列或多列创建了索引后,一旦涉及到 Tag / Edge 相关的写操作时,对应的索引必须连同数据一起被修改。下面将对索引的 write 操作在 storage 层的处理逻辑进行简单介绍:

INSERT——插入数据

当用户产生插入点 /边操作时,insertProcessor 首先会判断所插入的数据是否有存在索引的 Tag 属性 / Edge 属性。如果没有关联的属性列索引,则按常规方式生成新 Version,并将数据 put 到 Storage Engine ;如果有关联的属性列索引,则通过原子操作写入 Data 和 Index,并判断当前的 Vertex / Edge 是否有旧的属性值,如果有,则一并在原子操作中删除旧属性值。

DELETE——删除数据

当用户发生 Drop Vertex / Edge 操作时,deleteProcessor 会将 Data 和 Index (如果存在)一并删除,在删除的过程中同样需要使用原子操作。

UPDATE——更新数据

Vertex / Edge 的更新操作对于 Index 来说,则是 drop 和 insert 的操作:删除旧的索引,插入新的索引,为了保证数据的一致性,同样需要在原子操作中进行。但是对应普通的 Data 来说,仅仅是 insert 操作,使用最新 Version 的 Data 覆盖旧 Version 的 data 即可。

Index scan

在图数据库 Nebula Graph 中是用 LOOKUP 语句来处理 index scan 操作的,LOOKUP 语句可通过属性值作为判断条件,查出所有符合条件的点 /边,同样 LOOKUP 语句支持 WHERE 和 YIELD 子句。

LOOKUP 使用技巧

正如根据本文#数据存储结构#章节所描述那样,index 中的索引列是按照创建 index 时的列顺序决定。

举个例子,我们现在有 tag (col1, col2),根据这个 tag 我们可以创建不同的索引,例如:

我们可以对 clo1、col2 建立多个索引,但在 scan index 时,上述四个 index 返回结果存在差异,甚至是完全不同,在实际业务中具体使用哪个 index,及 index 的最优执行策略,则是通过索引优化器决定。

下面我们再来根据刚才 4 个 index 的例子深入分析一波:

lookup on tag where tag.col1 ==1  # 最优的 index 是 index1
lookup on tag where tag.col2 == 2 # 最优的 index 是 index2
lookup on tag where tag.col1 > 1 and tag.col2 == 1 
# index3 和 index4 都是有效的 index,而 index1 和 index2 则无效

在上述第三个例子中,index3 和 index4 都是有效 index,但最终必须要从两者中选出来一个作为 index,根据优化规则,因为 tag.col2 == 1 是一个等价查询,因此优先使用 tag.col2 会更高效,所以优化器应该选出 index4 为最优 index。

实操一下图数据库 Nebula Graph 索引

在这部分我们就不具体讲解某个语句的用途是什么了,如果你对语句不清楚的话可以去图数据库 Nebula Graph 的官方论坛进行提问:https://discuss.nebula-graph.io/

CREATE——索引的创建

(user@127.0.0.1:6999) [(none)]> CREATE SPACE my_space(partition_num=3, replica_factor=1);
Execution succeeded (Time spent: 15.566/16.602 ms)

Thu Feb 20 12:46:38 2020

(user@127.0.0.1:6999) [(none)]> USE my_space;
Execution succeeded (Time spent: 7.681/8.303 ms)

Thu Feb 20 12:46:51 2020

(user@127.0.0.1:6999) [my_space]> CREATE TAG lookup_tag_1(col1 string, col2 string, col3 string);
Execution succeeded (Time spent: 12.228/12.931 ms)

Thu Feb 20 12:47:05 2020

(user@127.0.0.1:6999) [my_space]> CREATE TAG INDEX t_index_1 ON lookup_tag_1(col1, col2, col3);
Execution succeeded (Time spent: 1.639/2.271 ms)

Thu Feb 20 12:47:22 2020

DROP——删除索引

(user@127.0.0.1:6999) [my_space]> DROP TAG INDEX t_index_1;
Execution succeeded (Time spent: 4.147/5.192 ms)

Sat Feb 22 11:30:35 2020

REBUILD——重建索引

如果你是从较老版本的 Nebula Graph 升级上来,或者用 Spark Writer 批量写入过程中(为了性能)没有打开索引,那么这些数据还没有建立过索引,这时可以使用 REBUILD INDEX 命令来重新全量建立一次索引。这个过程可能会耗时比较久,在 rebuild index 完成前,客户端的读写速度都会变慢。

REBUILD {TAG | EDGE} INDEX <index_name> [OFFLINE]

LOOKUP——使用索引

需要说明一下,使用 LOOKUP 语句前,请确保已经建立过索引( CREATE INDEX 或 REBUILD INDEX )。

(user@127.0.0.1:6999) [my_space]> INSERT VERTEX lookup_tag_1(col1, col2, col3) VALUES 200:("col1_200", "col2_200", "col3_200"),  201:("col1_201", "col2_201", "col3_201"), 202:("col1_202", "col2_202", "col3_202");
Execution succeeded (Time spent: 18.185/19.267 ms)

Thu Feb 20 12:49:44 2020

(user@127.0.0.1:6999) [my_space]> LOOKUP ON lookup_tag_1 WHERE lookup_tag_1.col1 == "col1_200";
============
| VertexID |
============
| 200      |
------------
Got 1 rows (Time spent: 12.001/12.64 ms)

Thu Feb 20 12:49:54 2020

(user@127.0.0.1:6999) [my_space]> LOOKUP ON lookup_tag_1 WHERE lookup_tag_1.col1 == "col1_200" YIELD lookup_tag_1.col1, lookup_tag_1.col2, lookup_tag_1.col3;
========================================================================
| VertexID | lookup_tag_1.col1 | lookup_tag_1.col2 | lookup_tag_1.col3 |
========================================================================
| 200      | col1_200          | col2_200          | col3_200          |
------------------------------------------------------------------------
Got 1 rows (Time spent: 3.679/4.657 ms)

Thu Feb 20 12:50:36 2020

索引的介绍就到此为止了,如果你对图数据库 Nebula Graph 的索引有更多的功能要求或者建议反馈,欢迎去 GitHub:https://github.com/vesoft-inc/nebula issue 区向我们提 issue 或者前往官方论坛:https://discuss.nebula-graph.io/ 的 Feedback  分类下提建议 👏

作者有话说:Hi,我是 bright-starry-sky,是图数据 Nebula Graph 研发工程师,对数据库存储有浓厚的兴趣,希望本次的经验分享能给大家带来帮助,如有不当之处也希望能帮忙纠正,谢谢~

980 次点击
所在节点    推广
0 条回复

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/652123

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX