「图像分类」是人工智能领域的一个热门话题,我们在实际生活中甚至业务的生产环境里,也经常遇到图像分类相似的需求,如何能快速搭建一个图像分类或者内容识别的 API 呢?
我们考虑使用 Serverless Framework 将图像识别模块部署到腾讯云云函数 SCF 上。
这里我们会用到一个图像相关的库:ImageAI
,官方给了一个简单的 demo:
from imageai.Prediction import ImagePrediction
import os
execution_path = os.getcwd()
prediction = ImagePrediction()
prediction.setModelTypeAsResNet()
prediction.setModelPath(os.path.join(execution_path, "resnet50_weights_tf_dim_ordering_tf_kernels.h5"))
prediction.loadModel()
predictions, probabilities = prediction.predictImage(os.path.join(execution_path, "1.jpg"), result_count=5 )
for eachPrediction, eachProbability in zip(predictions, probabilities):
print(eachPrediction + " : " + eachProbability)
接下来分四步进行:创建项目 → 安装依赖 → 配置 yml 文件 → 部署
首先,我们在本地创建一个 Python 的项目:mkdir imageDemo`
然后新建文件:``vim index.py`
from imageai.Prediction import ImagePrediction
import os, base64, random
execution_path = os.getcwd()
prediction = ImagePrediction()
prediction.setModelTypeAsSqueezeNet()
prediction.setModelPath(os.path.join(execution_path, "squeezenet_weights_tf_dim_ordering_tf_kernels.h5"))
prediction.loadModel()
def main_handler(event, context):
imgData = base64.b64decode(event["body"])
fileName = '/tmp/' + "".join(random.sample('zyxwvutsrqponmlkjihgfedcba', 5))
with open(fileName, 'wb') as f:
f.write(imgData)
resultData = {}
predictions, probabilities = prediction.predictImage(fileName, result_count=5)
for eachPrediction, eachProbability in zip(predictions, probabilities):
resultData[eachPrediction] = eachProbability
return resultData
项目创建完成之后,下载所依赖的模型:
- SqueezeNet (文件大小:4.82 MB,预测时间最短,精准度适中)
- ResNet50 by Microsoft Research (文件大小:98 MB,预测时间较快,精准度高)
- InceptionV3 by Google Brain team (文件大小:91.6 MB,预测时间慢,精度更高)
- DenseNet121 by Facebook AI Research (文件大小:31.6 MB,预测时间较慢,精度最高)
我们先用第一个 SqueezeNet
来做测试:
在官方文档复制模型文件地址:
使用 wget
直接安装:
wget https://github.com/OlafenwaMoses/ImageAI/releases/download/1.0/squeezenet_weights_tf_dim_ordering_tf_kernels.h5
接下来安装依赖,这里面貌似安装的内容蛮多的:
这里需要注意:其中一些依赖需要编译,因此要在 centos + python2.7/3.6 的版本下打包才可以,这很复杂,尤其对于 mac/windows 用户,伤不起。
这时候可以直接用我之前的打包网址:
下载解压后,直接放到自己的项目中即可:
接着创建 serverless.yaml
配置文件
imageDemo:
component: "@serverless/tencent-scf"
inputs:
name: imageDemo
codeUri: ./
handler: index.main_handler
runtime: Python3.6
region: ap-guangzhou
description: 图像识别 /分类 Demo
memorySize: 256
timeout: 10
events:
- apigw:
name: imageDemo_apigw_service
parameters:
protocols:
- http
serviceName: serverless
description: 图像识别 /分类 DemoAPI
environment: release
endpoints:
- path: /image
method: ANY
通过 serverless
命令(可使用命令缩写 sls
)进行部署,添加 --debug
参数查看部署详情:
$ sls --debug
如果你的账号未 登陆 或 注册 腾讯云,可以直接通过微信扫描命令行中的二维码,从而进行授权登陆和注册。
访问命令行输出的 URL,URL 就是我们刚才复制的 +/image
,通过 Python 语言进行测试:
import urllib.request
import base64
with open("1.jpg", 'rb') as f:
base64_data = base64.b64encode(f.read())
s = base64_data.decode()
url = 'http://service-9p7hbgvg-1256773370.gz.apigw.tencentcs.com/release/image'
print(urllib.request.urlopen(urllib.request.Request(
url = url,
data=s.encode("utf-8")
)).read().decode("utf-8"))
例如我们用这张图进行测试:
得到运行结果:
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
将代码修改一下,进行一下简单的耗时测试:
import urllib.request
import base64, time
for i in range(0,10):
start_time = time.time()
with open("1.jpg", 'rb') as f:
base64_data = base64.b64encode(f.read())
s = base64_data.decode()
url = 'http://service-hh53d8yz-1256773370.bj.apigw.tencentcs.com/release/test'
print(urllib.request.urlopen(urllib.request.Request(
url = url,
data=s.encode("utf-8")
)).read().decode("utf-8"))
print("cost: ", time.time() - start_time)
输出结果:
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 2.1161561012268066
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.1259253025054932
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.3322770595550537
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.3562259674072266
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.0180821418762207
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.4290671348571777
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.5917718410491943
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.1727900505065918
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 2.962592840194702
{"cheetah": 83.12643766403198, "Irish_terrier": 2.315458096563816, "lion": 1.8476998433470726, "teddy": 1.6655176877975464, "baboon": 1.5562783926725388}
cost: 1.2248001098632812
这个数据,整体性能基本在可接受范围内。
基于 Serverless 架构搭建的 Python 图像识别 /分类 小工具就大功告成啦!
传送门:
- GitHub: github.com/serverless
- 官网:serverless.com
欢迎访问:Serverless 中文网,您可以在 最佳实践 里体验更多关于 Serverless 应用的开发!
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.