MapReduce 在维基百科中的解释如下:
MapReduce 是 Google 提出的一个软件架构,用于大规模数据集(大于 1TB )的并行运算。概念「 Map (映射)」和「 Reduce (归纳)」,及他们的主要思想,都是从函数式编程语言借来的,还有从矢量编程语言借来的特性。
通过这段描述,我们知道,MapReduce 是面向大数据并行处理的计算模型、框架和平台,在传统学习中,通常会在 Hadoop 等分布式框架下进行 MapReduce 相关工作,随着云计算的逐渐发展,各个云厂商也都先后推出了在线的 MapReduce 业务。
本文将尝试通过 MapReduce 模型实现一个简单的 WordCount 算法,区别于传统使用 Hadoop 等大数据框架,本文使用对象存储 COS 与云函数 SCF 来实现。
在开始之前,我们根据 MapReduce 的要求,先绘制一个简单的流程图:
在这个结构中,我们需要 2 个云函数分别作 Mapper 和 Reducer ;以及 3 个对象存储的存储桶,分别作为输入的存储桶、中间临时缓存存储桶和结果存储桶。在实例前,由于我们的函数即将部署在广州区,因此在广州区建立 3 个存储桶:
对象存储 1 ap-guangzhou srcmr
对象存储 2 ap-guangzhou middlestagebucket
对象存储 3 ap-guangzhou destcmr
为了让整个 Mapper 和 Reducer 逻辑更加清晰,在开始之前先对传统的 WordCount 结构进行改造,使其更加适合云函数,同时合理分配 Mapper 和 Reducer 的工作:
编写 Mapper 相关逻辑,代码如下:
# -*- coding: utf8 -*-
import datetime
from qcloud_cos_v5 import CosConfig
from qcloud_cos_v5 import CosS3Client
from qcloud_cos_v5 import CosServiceError
import re
import os
import sys
import logging
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger()
logger.setLevel(level=logging.INFO)
region = u'ap-guangzhou' # 根据实际情况,修改地域
middle_stage_bucket = 'middlestagebucket' # 根据实际情况,修改 bucket 名
def delete_file_folder(src):
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc = os.path.join(src, item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass
def download_file(cos_client, bucket, key, download_path):
logger.info("Get from [%s] to download file [%s]" % (bucket, key))
try:
response = cos_client.get_object(Bucket=bucket, Key=key, )
response['Body'].get_stream_to_file(download_path)
except CosServiceError as e:
print(e.get_error_code())
print(e.get_error_msg())
return -1
return 0
def upload_file(cos_client, bucket, key, local_file_path):
logger.info("Start to upload file to cos")
try:
response = cos_client.put_object_from_local_file(
Bucket=bucket,
LocalFilePath=local_file_path,
Key='{}'.format(key))
except CosServiceError as e:
print(e.get_error_code())
print(e.get_error_msg())
return -1
logger.info("Upload data map file [%s] Success" % key)
return 0
def do_mapping(cos_client, bucket, key, middle_stage_bucket, middle_file_key):
src_file_path = u'/tmp/' + key.split('/')[-1]
middle_file_path = u'/tmp/' + u'mapped_' + key.split('/')[-1]
download_ret = download_file(cos_client, bucket, key, src_file_path) # download src file
if download_ret == 0:
inputfile = open(src_file_path, 'r') # open local /tmp file
mapfile = open(middle_file_path, 'w') # open a new file write stream
for line in inputfile:
line = re.sub('[^a-zA-Z0-9]', ' ', line) # replace non-alphabetic/number characters
words = line.split()
for word in words:
mapfile.write('%s\t%s' % (word, 1)) # count for 1
mapfile.write('\n')
inputfile.close()
mapfile.close()
upload_ret = upload_file(cos_client, middle_stage_bucket, middle_file_key,
middle_file_path) # upload the file's each word
delete_file_folder(src_file_path)
delete_file_folder(middle_file_path)
return upload_ret
else:
return -1
def map_caller(event, context, cos_client):
appid = event['Records'][0]['cos']['cosBucket']['appid']
bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid
key = event['Records'][0]['cos']['cosObject']['key']
key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1)
logger.info("Key is " + key)
middle_bucket = middle_stage_bucket + '-' + appid
middle_file_key = '/' + 'middle_' + key.split('/')[-1]
return do_mapping(cos_client, bucket, key, middle_bucket, middle_file_key)
def main_handler(event, context):
logger.info("start main handler")
if "Records" not in event.keys():
return {"errorMsg": "event is not come from cos"}
secret_id = ""
secret_key = ""
config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, )
cos_client = CosS3Client(config)
start_time = datetime.datetime.now()
res = map_caller(event, context, cos_client)
end_time = datetime.datetime.now()
print("data mapping duration: " + str((end_time - start_time).microseconds / 1000) + "ms")
if res == 0:
return "Data mapping SUCCESS"
else:
return "Data mapping FAILED"
同样的方法,建立 reducer.py
文件,编写 Reducer 逻辑,代码如下:
# -*- coding: utf8 -*-
from qcloud_cos_v5 import CosConfig
from qcloud_cos_v5 import CosS3Client
from qcloud_cos_v5 import CosServiceError
from operator import itemgetter
import os
import sys
import datetime
import logging
region = u'ap-guangzhou' # 根据实际情况,修改地域
result_bucket = u'destmr' # 根据实际情况,修改 bucket 名
logging.basicConfig(level=logging.INFO, stream=sys.stdout)
logger = logging.getLogger()
logger.setLevel(level=logging.INFO)
def delete_file_folder(src):
if os.path.isfile(src):
try:
os.remove(src)
except:
pass
elif os.path.isdir(src):
for item in os.listdir(src):
itemsrc = os.path.join(src, item)
delete_file_folder(itemsrc)
try:
os.rmdir(src)
except:
pass
def download_file(cos_client, bucket, key, download_path):
logger.info("Get from [%s] to download file [%s]" % (bucket, key))
try:
response = cos_client.get_object(Bucket=bucket, Key=key, )
response['Body'].get_stream_to_file(download_path)
except CosServiceError as e:
print(e.get_error_code())
print(e.get_error_msg())
return -1
return 0
def upload_file(cos_client, bucket, key, local_file_path):
logger.info("Start to upload file to cos")
try:
response = cos_client.put_object_from_local_file(
Bucket=bucket,
LocalFilePath=local_file_path,
Key='{}'.format(key))
except CosServiceError as e:
print(e.get_error_code())
print(e.get_error_msg())
return -1
logger.info("Upload data map file [%s] Success" % key)
return 0
def qcloud_reducer(cos_client, bucket, key, result_bucket, result_key):
word2count = {}
src_file_path = u'/tmp/' + key.split('/')[-1]
result_file_path = u'/tmp/' + u'result_' + key.split('/')[-1]
download_ret = download_file(cos_client, bucket, key, src_file_path)
if download_ret == 0:
map_file = open(src_file_path, 'r')
result_file = open(result_file_path, 'w')
for line in map_file:
line = line.strip()
word, count = line.split('\t', 1)
try:
count = int(count)
word2count[word] = word2count.get(word, 0) + count
except ValueError:
logger.error("error value: %s, current line: %s" % (ValueError, line))
continue
map_file.close()
delete_file_folder(src_file_path)
sorted_word2count = sorted(word2count.items(), key=itemgetter(1))[::-1]
for wordcount in sorted_word2count:
res = '%s\t%s' % (wordcount[0], wordcount[1])
result_file.write(res)
result_file.write('\n')
result_file.close()
upload_ret = upload_file(cos_client, result_bucket, result_key, result_file_path)
delete_file_folder(result_file_path)
return upload_ret
def reduce_caller(event, context, cos_client):
appid = event['Records'][0]['cos']['cosBucket']['appid']
bucket = event['Records'][0]['cos']['cosBucket']['name'] + '-' + appid
key = event['Records'][0]['cos']['cosObject']['key']
key = key.replace('/' + str(appid) + '/' + event['Records'][0]['cos']['cosBucket']['name'] + '/', '', 1)
logger.info("Key is " + key)
res_bucket = result_bucket + '-' + appid
result_key = '/' + 'result_' + key.split('/')[-1]
return qcloud_reducer(cos_client, bucket, key, res_bucket, result_key)
def main_handler(event, context):
logger.info("start main handler")
if "Records" not in event.keys():
return {"errorMsg": "event is not come from cos"}
secret_id = "SecretId"
secret_key = "SecretKey"
config = CosConfig(Region=region, SecretId=secret_id, SecretKey=secret_key, )
cos_client = CosS3Client(config)
start_time = datetime.datetime.now()
res = reduce_caller(event, context, cos_client)
end_time = datetime.datetime.now()
print("data reducing duration: " + str((end_time - start_time).microseconds / 1000) + "ms")
if res == 0:
return "Data reducing SUCCESS"
else:
return "Data reducing FAILED"
遵循 Serverless Framework 的 yaml
规范,编写 serveerless.yaml
:
WordCountMapper:
component: "@serverless/tencent-scf"
inputs:
name: mapper
codeUri: ./code
handler: index.main_handler
runtime: Python3.6
region: ap-guangzhou
description: 网站监控
memorySize: 64
timeout: 20
events:
- cos:
name: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com
parameters:
bucket: srcmr-1256773370.cos.ap-guangzhou.myqcloud.com
filter:
prefix: ''
suffix: ''
events: cos:ObjectCreated:*
enable: true
WordCountReducer:
component: "@serverless/tencent-scf"
inputs:
name: reducer
codeUri: ./code
handler: index.main_handler
runtime: Python3.6
region: ap-guangzhou
description: 网站监控
memorySize: 64
timeout: 20
events:
- cos:
name: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com
parameters:
bucket: middlestagebucket-1256773370.cos.ap-guangzhou.myqcloud.com
filter:
prefix: ''
suffix: ''
events: cos:ObjectCreated:*
enable: true
完成之后,通过 sls --debug
指令进行部署。部署成功之后,进行基本的测试:
准备一个英文文档:
登录腾讯云后台,打开我们最初建立的存储桶:srcmr,并上传该文件;
上传成功之后,稍等片刻即可看到 Reducer 程序已经在 Mapper 执行之后,产出日志:
此时,我们打开结果存储桶,查看结果:
现在,我们就完成了简单的词频统计功能。
Serverless 架构相是适用于大数据处理的。在腾讯云官网,我们也可以看到其关于数据 ETL 处理的场景描述:
一些数据处理系统中,常常需要周期性 /计划性地处理庞大的数据量。例如:证券公司每 12 小时统计一次该时段的交易情况并整理出该时段交易量 top 5,每天处理一遍秒杀网站的交易流日志获取因售罄而导致的错误从而分析商品热度和趋势等。云函数近乎无限扩容的能力可以使您轻松地进行大容量数据的计算。我们利用云函数可以对源数据并发执行多个 mapper 和 reducer 函数,在短时间内完成工作;相比传统的工作方式,使用云函数更能避免资源的闲置浪费从而节省资金。
本实例中,有一键部署多个函数的操作。在实际生产中,每个项目都不会是单个函数单打独斗的,而是多个函数组合应用,形成一个 Service 体系,所以一键部署多个函数就显得尤为重要。通过本实例,希望读者可以对 Serverless 架构的应用场景有更多的了解,并且能有所启发,将云函数和不同触发器进行组合,应用在自身业务中。
传送门:
- GitHub: github.com/serverless
- 官网:serverless.com
- 社区:Serverless 中文网
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.