如何 10 分钟内插入 13 亿条记录?

2020-10-10 09:16:50 +08:00
 hooopo

之前的一个帖子 单表 13 亿记录创建索引需要多长时间? 测试了在一台 8C32G 服务器给一列加索引大概需要 24 分钟,由于插入脚本没有优化,花费了大概 2 个小时左右。

最近研究了一下,还是 8C32G 服务器,最快的插入大概多久?先上结论:10 分钟。

步骤:

建表:

CREATE unlogged TABLE  "test" (
  "id" SERIAL PRIMARY KEY NOT NULL,
  "ip" integer NOT NULL,
  "domain" varchar DEFAULT 'drawerd.com'
);

再生成一个 12.8 亿条记录的 csv,大概 41G

f = File.open("ii.csv", "w")
(1..1280000000).each do |x|
  f.puts [x, Random.random_number(1000000000), "#{x}.com"].join(",")
end
f.close

csv 概览:

tail -fn20 ii.csv
1279999981,379768240,1279999981.com
1279999982,440776589,1279999982.com
1279999983,194045965,1279999983.com
1279999984,643339201,1279999984.com
1279999985,397295532,1279999985.com
1279999986,308045177,1279999986.com
1279999987,860093304,1279999987.com
1279999988,557636470,1279999988.com
1279999989,882497774,1279999989.com
1279999990,987416658,1279999990.com
1279999991,728315013,1279999991.com
1279999992,163951092,1279999992.com
1279999993,524652,1279999993.com
1279999994,871673632,1279999994.com
1279999995,833545894,1279999995.com
1279999996,635775438,1279999996.com
1279999997,19686670,1279999997.com
1279999998,243310061,1279999998.com
1279999999,706814112,1279999999.com
1280000000,701386384,1280000000.com

使用timesccaledb-parallel-copy,开 8 个进程,batch-size 设置为 10w,并发 copy 。之前以为 timesccaledb-parallel-copy 只能 timescaledb 用,现在测试了一下,纯 pg 也可以用。

timescaledb-parallel-copy --db-name postgres --table test --file ./ii.csv --workers 8 --reporting-period 30s -connection "host=localhost user=postgres password=helloworld sslmode=disable" -truncate -batch-size 100000

如果单纯使用 PG 的 copy 的话,只是利用单进程,使用 imescaledb-parallel-copy 会多进程同时 copy,从图上可以看到 CPU 几乎被跑满。可以达到每秒 200w 的写入。如果是 64 核的机器,只要不到两分钟,神不神奇...

timescaledb-parallel-copy --db-name postgres --table test --file ./ii.csv --workers 8 --reporting-period 30s -connection "host=localhost user=postgres password=helloworld sslmode=disable" -truncate -batch-size 100000
at 30s, row rate 2049993.13/sec (period), row rate 2049993.13/sec (overall), 6.150000E+07 total rows
at 1m0s, row rate 1913075.25/sec (period), row rate 1981529.69/sec (overall), 1.189000E+08 total rows
at 1m30s, row rate 1930261.28/sec (period), row rate 1964442.55/sec (overall), 1.768000E+08 total rows
at 2m0s, row rate 1943332.35/sec (period), row rate 1959165.00/sec (overall), 2.351000E+08 total rows
at 2m30s, row rate 1966667.61/sec (period), row rate 1960665.52/sec (overall), 2.941000E+08 total rows
at 3m0s, row rate 1919998.29/sec (period), row rate 1953887.65/sec (overall), 3.517000E+08 total rows
at 3m30s, row rate 1950001.96/sec (period), row rate 1953332.55/sec (overall), 4.102000E+08 total rows
at 4m0s, row rate 1949999.02/sec (period), row rate 1952915.86/sec (overall), 4.687000E+08 total rows
at 4m30s, row rate 1929999.19/sec (period), row rate 1950369.56/sec (overall), 5.266000E+08 total rows
at 5m0s, row rate 1873333.69/sec (period), row rate 1942665.98/sec (overall), 5.828000E+08 total rows
at 5m30s, row rate 1913172.63/sec (period), row rate 1939984.56/sec (overall), 6.402000E+08 total rows
at 6m0s, row rate 1843488.31/sec (period), row rate 1931943.89/sec (overall), 6.955000E+08 total rows
at 6m30s, row rate 1816666.49/sec (period), row rate 1923076.40/sec (overall), 7.500000E+08 total rows
at 7m0s, row rate 1962938.14/sec (period), row rate 1925924.19/sec (overall), 8.089000E+08 total rows
at 7m30s, row rate 1950394.13/sec (period), row rate 1927555.19/sec (overall), 8.674000E+08 total rows
at 8m0s, row rate 1963333.08/sec (period), row rate 1929791.31/sec (overall), 9.263000E+08 total rows
at 8m30s, row rate 1963333.49/sec (period), row rate 1931764.38/sec (overall), 9.852000E+08 total rows
at 9m0s, row rate 1966666.04/sec (period), row rate 1933703.36/sec (overall), 1.044200E+09 total rows
at 9m30s, row rate 1963333.35/sec (period), row rate 1935262.83/sec (overall), 1.103100E+09 total rows
at 10m0s, row rate 1949999.36/sec (period), row rate 1935999.66/sec (overall), 1.161600E+09 total rows
at 10m30s, row rate 1966667.45/sec (period), row rate 1937460.03/sec (overall), 1.220600E+09 total rows
at 11m0s, row rate 1933333.38/sec (period), row rate 1937272.46/sec (overall), 1.278600E+09 total rows
COPY 1280000000

5644 次点击
所在节点    问与答
39 条回复
ferock
2020-10-10 09:34:10 +08:00
学习了,感谢
mazyi
2020-10-10 09:58:33 +08:00
主要还是 ssd 厉害
hooopo
2020-10-10 10:11:48 +08:00
@mazyi 别瞎说 你也用 ssd 试一下
sunziren
2020-10-10 10:12:50 +08:00
six ! six ! six !
Numbcoder
2020-10-10 10:28:21 +08:00
炮哥厉害!
opengps
2020-10-10 10:35:40 +08:00
这个测试的意义并不大,与其说是测试写入 io,倒不如说是在测试硬盘写入速度(直接总数据大小除以硬盘平均写入速度)
现实里的这种规模的表:
1,往往不会是自增 id (因为自增有极限值),而是选用时间戳作为聚集索引,写入时候需要考虑维护索引的开销
2,很难使同样的块大小,现实中的大量数据,往往不采用等长大小存储
3,ssd 硬盘的性能,可能有不同的实现方式,比如虚拟机下的 ssd,只能约等于普通物理机械硬盘的 io
chihiro2014
2020-10-10 10:59:05 +08:00
对于这种,磁盘 IO 就是瓶颈了吧= =,内存型应该会更快
hooopo
2020-10-10 11:12:34 +08:00
@opengps

自增有极限值怎么了?你了解一下 int8 的范围再来发言好不好?
请问,目前有什么方案导入到数据库的速度能逼近硬盘写入速度?
liprais
2020-10-10 11:16:58 +08:00
@opengps postgres 哪来的 clustering index ?
leafre
2020-10-10 11:17:04 +08:00
哈哈哈
opengps
2020-10-10 11:32:33 +08:00
@hooopo 没有杠的意思哈,只是发表下个人的理解和评论
应用场景不同,对于超大数据量的应用,实际项目中都是需要避免任何带有极限值的自增 id,这也是出于对于将来分布式数据库的设计考虑,我最近还一不小心因为对于日志表增长的忽视,在 sqlserver 中因为自增 int 爆表了一次。
@liprais pg 我并不熟悉,我是基于我对关系型数据库应用的推断
hooopo
2020-10-10 11:44:53 +08:00
@opengps 别扯分布式 snowflake uuid 就是 bigint 的 分布式么?你自己用 int4 爆表了是连范围都不清楚怪谁?
opengps
2020-10-10 11:45:29 +08:00
@hooopo 好的,不扯了,给你造成不便,。告辞
030
2020-10-10 11:49:09 +08:00
这就是跑分仔?有鲁大师评分吗
hooopo
2020-10-10 11:51:30 +08:00
@030 啥叫跑分?你在 v 站上搜一下 看看其他人 mongo mysql pg 插入的速度 你就知道 10 分钟 13 亿是什么水平
chihiro2014
2020-10-10 11:53:40 +08:00
@opengps pg 中的那个叫做 clustered index,叫法不同罢了
mazyi
2020-10-10 11:55:25 +08:00
@hooopo 既然你觉得不是 ssd 厉害,那你换成机械硬盘也跑一个。
liprais
2020-10-10 11:57:53 +08:00
“pg 我并不熟悉,我是基于我对关系型数据库应用的推断”
笑掉大牙
hooopo
2020-10-10 12:08:40 +08:00
@liprais 这哥们能自己用 int4 主键存日志爆了表,然后来这里指导不能用有极值的类型,估计没跑爆表之前不知道 int4 范围,也是醉了
hooopo
2020-10-10 12:10:50 +08:00
@mazyi 我换 USB 也比你跑的快

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/713519

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX