MBP16 i9-9880h 5500M 8G
#!/usr/bin/env python
# coding: utf-8
import tensorflow.compat.v2 as tf
import tensorflow_datasets as tfds
tf.enable_v2_behavior()
from tensorflow.python.framework.ops import disable_eager_execution
disable_eager_execution()
from tensorflow.python.compiler.mlcompute import mlcompute
mlcompute.set_mlc_device(device_name='cpu')
(ds_train, ds_test), ds_info = tfds.load(
'mnist',
split=['train', 'test'],
shuffle_files=True,
as_supervised=True,
with_info=True,
)
def normalize_img(image, label):
"""Normalizes images: `uint8` -> `float32`."""
return tf.cast(image, tf.float32) / 255., label
ds_train = ds_train.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_train = ds_train.cache()
ds_train = ds_train.shuffle(ds_info.splits['train'].num_examples)
ds_train = ds_train.batch(128)
ds_train = ds_train.prefetch(tf.data.experimental.AUTOTUNE)
ds_test = ds_test.map(
normalize_img, num_parallel_calls=tf.data.experimental.AUTOTUNE)
ds_test = ds_test.batch(128)
ds_test = ds_test.cache()
ds_test = ds_test.prefetch(tf.data.experimental.AUTOTUNE)
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28, 1)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(
loss='sparse_categorical_crossentropy',
optimizer=tf.keras.optimizers.Adam(0.001),
metrics=['accuracy'],
)
model.fit(
ds_train,
epochs=10,
)
GPU 速度
Epoch 1/10 469/469 [==============================] - 10s 14ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.3598 - accuracy: 0.9028
Epoch 2/10 469/469 [==============================] - 9s 14ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1623 - accuracy: 0.9535
Epoch 3/10 469/469 [==============================] - 9s 14ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.1182 - accuracy: 0.9664
Epoch 4/10 469/469 [==============================] - 9s 14ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0911 - accuracy: 0.9735
Epoch 5/10 469/469 [==============================] - 9s 14ms/step - batch: 234.0000 - size: 1.0000 - loss: 0.0732 - accuracy: 0.9786
CPU 速度
Epoch 1/10 469/469 [==============================] - 3s 1ms/step - batch: 234.0000 - size: 1.0000 - loss: nan - accuracy: 0.0987
Epoch 2/10 469/469 [==============================] - 3s 1ms/step - batch: 234.0000 - size: 1.0000 - loss: nan - accuracy: 0.0987
Epoch 3/10 469/469 [==============================] - 3s 1ms/step - batch: 234.0000 - size: 1.0000 - loss: nan - accuracy: 0.0987
Epoch 4/10 469/469 [==============================] - 3s 1ms/step - batch: 234.0000 - size: 1.0000 - loss: nan - accuracy: 0.0987
Epoch 5/10 469/469 [==============================] - 3s 1ms/step - batch: 234.0000 - size: 1.0000 - loss: nan - accuracy: 0.0987
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.