@
fxybk #10
哈哈哈其实简单的判断并不难,只需要知道
1.哈希表是多数情况下 key-value 储存算法的选择,他的算法复杂度不高,效率相对来说应该是能经过考验的。另外“hash”也是指具体的“实现方式”
2.树形是常见普通人手写 key-value 算法选择,和哈希表对比可能他的速度稍稍差一点点(但是树形实现多数情况下速度也很优秀了,如果选用具体的如红黑树这种经典树形实现(红黑树算是树里面相当优秀的),基本是很够用了),且树形相对哈希来说可能好写一些(这只是个人认为)
3.像哈希这种优秀的算法比较大的缺点是空间占用不小,一般来说你要储存 100 个 key-value 可能需要 300 个左右的空间
4.相对来说树的具体实现,红黑树是很优秀的,但难写一些,AVL 没红黑树强,但依然优秀,且比较好写
5.树形实现速度也很快,复杂度是 O(log N),大概就是总量为 2 ^ 20 次方的数据,每次查找差不多只需要查 20 个数据即可,而和一般的如队列从头找到尾的查找方案对比是快的没边了
6.LRU 是缓存置换算法,并不是具体的“实现”,只是一种思想形成的结构,也就是说只要满足一定的特征就能称为 LRU,但是具体实现方案的不同,效率可能差很远
在没有特殊技巧的前提下,如果侧重速度,选用哈希表 /树来储存 key-value 应该平均下来最快的了。
如果有特殊技巧,比如:最近用过的数据接下来被使用的几率更高这种规律下,如果频繁的进行查找最近用过的几个数据,那么队列的实现会快一丢丢(因为虽然有 2 ^ 20 个数据,但你查来查去只查前面几个,那当然容易啊)
而且“最近用过的数据接下来被使用的几率更高”这种规律其实只是像算力“摩尔定律”一样只是人为粗略的概括起来的一种规律,实际效果比较玄学,如果不是空间很有限的话,我认为根本没必要使用严格的 LRU 实现,直接使用自带的哈希表存下来就可以了;而使用如(链表+哈希表)来实现的 LRU 其实就是用链表来占据“最近用过的数据接下来被使用的几率更高”的优势,除了用哈希表来查找之外,链表可以加速排在前面的项的查找,并且方便把久远没用的数据丢掉来减小空间占用
综上:如果想要实现简单,直接用语言自带的哈希表走起,不过这太简单了,估计不是人家想考的,如果要实现 LRU 的话,最好是用链表+哈希表,用哈希表来找具体位置,关于规律的部分就是把最新用的数据排到最前面,每次查找完就把这个数据放到最前排就可以了