比较好奇,如果算力足够的话,比如从 torchvison 里面选一些什么 resnet34 之类的网络,然后对立面的所有层的超参可能出现的值的选出一些可能的大小,然后排列组合后,全部都训练一遍,选出效果最好的,这种对于普遍性的数据集是有意义的工作吗?还是说只能用来针对单一数据集,换个数据集就不好使了。有人用这种技巧来刷榜吗?
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.