请看下图,我在一篇论文中的确看到了应用主成分得分的方法对样本排序,当时就觉得很奇怪,为什么方差越大的主成分给的权重就越大,这样做的理论依据是什么?想达到什么目的?
关于下图中的内容我有如下疑问,原文引用基本都来自书中划线部分。
1 ,“ 而仅是体现在数据的变异性上,把反映数据变异性信息的前 m 个主成分线性组合起来将会瓦解主成分在变异性信息上的优势,”-----既然主成分反映了数据的变异性,为什么把它们线性组合起来,反而破坏了变异性上的优势?
2 ,“ 这是因为,原始变量的含义是实在的、确切的,这是看懂和理解线性组合含义的基础;而主成分是人为定义、意义含糊的”----------我也有这种感觉,觉得主成分意义模糊。但是否有针对性的方法克服上述障碍呢?总不能让主成分分析的结果闲置吧。
其次,大家是否有专门讨论“主成分分析结果如何应用”的书籍或文章推荐?(不涉及如何计算主成分)。
摘自上海财经大学王学民老师应用多元统计分析
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
https://www.v2ex.com/t/836166
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.