有描述不清楚的地方还请大佬们积极提出,我会积极回答。
现有一个 5*5 矩阵 Mat
[ a11 ,a12 , a13 , a14 , a15;
a21 ,a22 , a23 , a24 , a25;
a31 ,a32 , a33 , a34 , a35;
a41 ,a42 , a43 , a44 , a45;
a51 ,a52 , a53 , a54 , a55 ]
求一个矩阵 matR ,将 mat 再排列。
要求原矩阵 mat 中的相邻元素(横竖左右撇捺)在新生成 matR 中不相邻
对每个元素 aij 设定积分 point(ij). aij 在新矩阵 matR 中距离原相邻元素距离之和为 point(ij)
例如:aij 在原矩阵 Mat 的相邻元素{a(i-1)j,a(i-1)(j-1),......... } 在新矩阵 matR 中距离这些元素的直线距离单元格数为{1 ,1 ,1 ,1 ,1 ,1 ,1 ,1} 合计为 point(ij)=8
要求在生成的 matR 中 Σpoint(ij) 最大化
发在隔壁节点没反应,所以在这重发一次
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.