大数据量、高并发业务怎么优化?(一)

2022-12-08 00:19:07 +08:00
 wayn111

博主这里的大数据量、高并发业务处理优化基于博主线上项目实践以及全网资料整理而来,在这里分享给大家

一. 大数据量上传写入优化

线上业务后台项目有一个消息推送的功能,通过上传包含用户 id 的文件,给指定用户推送系统消息

1.1 如上功能描述很简单,但是对于技术侧想要做好这个功能,保证大用户量(比如达到百万级别)下,系统正常运行,功能正常其实是需要仔细思考的,博主这里给出思路:

  1. 上传文件类型选择

通常情况下大部分用户都会使用 excel 文件,但是相比 excel 文件还有一种更加推荐的文件格式,那就是 csv 文件,相比 excel 文件它可以直接在记事本编辑,excel 也可以打开 cvs 文件,且占用内存更少(画重点),对于上传的 csv 文件过于庞大,也可以采用流式读取,读一部分写一部分

  1. 消息推送成功与否状态保存

由于大批量数据插入是一个耗时操作(可能几秒也可能几分钟),所以需要保存批量插入是否成功的状态,在后台中可以显现出这条消息推送记录是成功还是失败,方便运营回溯消息推送状态

  1. 批量写入启不启用事务

博主这里给出两种方案利弊:

综上:在大数据量下,我们要是追求极致性能可以不启用事务,具体选择也需各位结合自身业务情况

  1. 推送异常失败的消息处理

建议功能设计上,可以屏蔽对失败消息再进行操作,这样不需要再处理之前推送失败写入的脏数据,直接新增消息推送即可

1.2 批量写入代码优化

  1. jdbc 参数携带 rewriteBatchedStatements=true 在 jdbc 驱动上启动批量写入功能,如下
spring.datasource.master.jdbc-url=jdbc:mysql://localhost:3306/test_db?allowMultiQueries=true&characterEncoding=utf8&autoReconnect=true&useSSL=false&rewriteBatchedStatements=true
  1. 启用 insert into table(id, name) values(1, 'tom'),(2, 'jack') 模式,建议一次写入个数不要太多,MySQL 对于 sql 长度是有限制的,对于这种字段少的表,一次写入 500 - 1000 问题不大,字段多了需要降低这个写入量
insert into im_notice_app_ref(notice_id, app_id, create_time)
values
<foreach collection="list" separator="," item="item">
    (#{item.noticeId}, #{item.appId}, #{item.createTime})
</foreach>

一般情况下大家都知道第二条优化,但是可能会忽略 jdbc 参数携带 rewriteBatchedStatements=true,这个参数能在第二条的基础上启用批量执行 SQL ,进一步提升写入性能

二. 大事务优化,减小影响范围,提升系统处理能力

@Transactional 大于 Spring 提供得事务注解,许多人都知道,但是在高并发下,不建议使用,推荐通过编程式事务来手动控制事务提交或者回滚,减少事务影响范围

如下是一段订单超时未支付回滚业务数据得代码,采用 @Transactional 事务注解

@Transactional(rollbackFor = Exception.class)
public void doUnPaidTask(Long orderId) {
    // 1. 查询订单是否存在
    Order order = orderService.getById(orderId);
    if (order == null) {
        throw new BusinessException(String.format("订单不存在,orderId:%s", orderId));
    }
    if (order.getOrderStatus() != OrderStatusEnum.ORDER_PRE_PAY.getOrderStatus()) {
        throw new BusinessException(String.format("订单状态错误,order:%s", order));
    }

    // 2. 设置订单为已取消状态
    order.setOrderStatus((byte) OrderStatusEnum.ORDER_CLOSED_BY_EXPIRED.getOrderStatus());
    order.setUpdateTime(new Date());
    if (!orderService.updateById(order)) {
        throw new BusinessException("更新数据已失效");
    }

    // 3.商品货品数量增加
    LambdaQueryWrapper<OrderItem> queryWrapper = Wrappers.lambdaQuery();
    queryWrapper.eq(OrderItem::getOrderId, orderId);
    List<OrderItem> orderItems = orderItemService.list(queryWrapper);
    for (OrderItem orderItem : orderItems) {
        if (orderItem.getSeckillId() != null) { // 秒杀单商品项处理
            Long seckillId = orderItem.getSeckillId();
            SeckillService seckillService = SpringContextUtil.getBean(SeckillService.class);
            if (!seckillService.addStock(seckillId)) {
                throw new BusinessException("秒杀商品货品库存增加失败");

            }
        } else { // 普通单商品项处理
            Long goodsId = orderItem.getGoodsId();
            Integer goodsCount = orderItem.getGoodsCount();
            if (!goodsDao.addStock(goodsId, goodsCount)) {
                throw new BusinessException("秒杀商品货品库存增加失败");
            }
        }
    }

    // 4. 返还优惠券
    couponService.releaseCoupon(orderId);
    log.info("---------------订单 orderId:{},未支付超时取消成功", orderId);
}

采用编程式事务对其优化,代码如下:

@Resource
private PlatformTransactionManager platformTransactionManager;
@Resource
private TransactionDefinition transactionDefinition;

public void doUnPaidTask(Long orderId) {
    // 启用编程式事务
    // 1. 在开启事务钱查询订单是否存在
    Order order = orderService.getById(orderId);
    if (order == null) {
        throw new BusinessException(String.format("订单不存在,orderId:%s", orderId));
    }
    if (order.getOrderStatus() != OrderStatusEnum.ORDER_PRE_PAY.getOrderStatus()) {
        throw new BusinessException(String.format("订单状态错误,order:%s", order));
    }
    // 2. 开启事务
    TransactionStatus transaction = platformTransactionManager.getTransaction(transactionDefinition);
    try {
        // 3. 设置订单为已取消状态
        order.setOrderStatus((byte) OrderStatusEnum.ORDER_CLOSED_BY_EXPIRED.getOrderStatus());
        order.setUpdateTime(new Date());
        if (!orderService.updateById(order)) {
            throw new BusinessException("更新数据已失效");
        }
        // 4. 商品货品数量增加
        LambdaQueryWrapper<OrderItem> queryWrapper = Wrappers.lambdaQuery();
        queryWrapper.eq(OrderItem::getOrderId, orderId);
        List<OrderItem> orderItems = orderItemService.list(queryWrapper);
        for (OrderItem orderItem : orderItems) {
            if (orderItem.getSeckillId() != null) { // 秒杀单商品项处理
                Long seckillId = orderItem.getSeckillId();
                SeckillService seckillService = SpringContextUtil.getBean(SeckillService.class);
                RedisCache redisCache = SpringContextUtil.getBean(RedisCache.class);
                if (!seckillService.addStock(seckillId)) {
                    throw new BusinessException("秒杀商品货品库存增加失败");
                }
                redisCache.increment(Constants.SECKILL_GOODS_STOCK_KEY + seckillId);
                redisCache.deleteCacheSet(Constants.SECKILL_SUCCESS_USER_ID + seckillId, order.getUserId());
            } else { // 普通单商品项处理
                Long goodsId = orderItem.getGoodsId();
                Integer goodsCount = orderItem.getGoodsCount();
                if (!goodsDao.addStock(goodsId, goodsCount)) {
                    throw new BusinessException("秒杀商品货品库存增加失败");
                }
            }
        }

        // 5. 返还优惠券
        couponService.releaseCoupon(orderId);
        // 6. 所有更新操作完成后,提交事务
        platformTransactionManager.commit(transaction);
        log.info("---------------订单 orderId:{},未支付超时取消成功", orderId);
    } catch (Exception e) {
        log.info("---------------订单 orderId:{},未支付超时取消失败", orderId, e);
        // 7. 发生异常,回滚事务
        platformTransactionManager.rollback(transaction);
    }
}

可以看到采用编程式事务后,我们将查询逻辑排除在事务之外,减小了其影响范围,也就提升了性能,在高并发场景下,性能优先的场景,我们甚至可以考虑不适用事务

三. 客户端海量日志上报优化

线上项目客户端,采用 tcp 协议与日志采集服务建立连接,上报日志数据。业务高峰期下,会有同时成千个客户端建立连接实时上报日志数据

如上场景,高峰期下,对日志采集服务会造成不小的压力,处理服务处理不当,会造成高峰期下,服务卡顿、CPU 占用过高、内存溢出等。

这里给出海量日志高并发下优化点:

  1. 上报日志进行异步化处理,

如上三种方案:大家可以结合自身项目实际体量选择

  1. 采集日志压缩

对上报后的日志如果要再发送给其他服务,推荐是对其进行压缩处理,避免消耗过多网络带宽以及最终数据落库选型:

最后,附博主 github 地址: https://github.com/wayn111

1354 次点击
所在节点    程序员
3 条回复
byte10
2022-12-08 09:33:11 +08:00
想的有点复杂了吧,一个带事务的 MQ 就可以解决你的问题了??
wayn111
2022-12-08 09:42:28 +08:00
@byte10 老哥讲讲
byte10
2022-12-08 09:52:23 +08:00
1 、上传的数据写入 MQ ,消息推送事务,回滚 mq 消息。2 、读取 mq 数据写入数据库,这个瓶颈一般在于数据库上,多个客户端同时消费。3 、日志那边没啥问题

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/900925

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX