背景如下
超大规模(几万亿)稀疏样本拆分成几十万 /上百万的规模进行聚类,现在使用的是 Python Sklearn 库里的 MiniBatchKMeans ,据说还是达不到业务要求
已知:现有方案只有单机场景,应该只能在 Sklearn 的基础上优化
我的任务是要比库的方法有性能提升,看了几天源码,没有什么思路...达不到性能提升的话,这工作应该是悬了
有没有优化过这一块的 xd 提供一点想法?
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.