Openjob 基于 Akka 架构的新一代分布式任务调度框架。支持多种定时任务、延时任务、工作流设计,采用无中心化架构,底层使用一致性分片算法,支持无限水平扩容。
如果您正在寻找一款高性能的分布式任务调度框架,支持定时任务、延时任务、轻量级计算、工作流编排,并且支持多种编程语言,那么 Openjob 肯定是不二之选(https://github.com/open-job/openjob)。
openjob 发布至今已更新到 1.0.7 新增支持 H2/TiDB 数据库,新增秒级任务、固定频率任务、广播任务、分片任务、Map Reduce 轻量计算。
秒级任务,支持 1~60 秒间隔的秒级延迟调度,即每次任务执行完成后,间隔秒级时间再次触发调度,适用于对实时性要求比较高的业务。
优势
由于 Crontab 必须被 60 整除,如果需要每隔 50 分钟执行一次调度,则 Cron 无法支持。
MapReduce 模型是轻量级分布式跑批任务。通过 MapProcessor 或 MapReduceProcessor 接口实现。相对于传统的大数据跑批(例如 Hadoop 、Spark 等),MapReduce 无需将数据导入大数据平台,且无额外存储及计算成本,即可实现秒级别海量数据处理,具有成本低、速度快、编程简单等特性。
/**
* @author stelin swoft@qq.com
* @since 1.0.7
*/
@Component("mapReduceTestProcessor")
public class MapReduceTestProcessor implements MapReduceProcessor {
private static final Logger logger = LoggerFactory.getLogger("openjob");
private static final String TWO_NAME = "TASK_TWO";
private static final String THREE_NAME = "TASK_THREE";
@Override
public ProcessResult process(JobContext context) {
if (context.isRoot()) {
List<MapChildTaskTest> tasks = new ArrayList<>();
for (int i = 1; i < 5; i++) {
tasks.add(new MapChildTaskTest(i));
}
logger.info("Map Reduce root task mapList={}", tasks);
return this.map(tasks, TWO_NAME);
}
if (context.isTask(TWO_NAME)) {
MapChildTaskTest task = (MapChildTaskTest) context.getTask();
List<MapChildTaskTest> tasks = new ArrayList<>();
for (int i = 1; i < task.getId()*2; i++) {
tasks.add(new MapChildTaskTest(i));
}
logger.info("Map Reduce task two mapList={}", tasks);
return this.map(tasks, THREE_NAME);
}
if (context.isTask(THREE_NAME)) {
MapChildTaskTest task = (MapChildTaskTest) context.getTask();
logger.info("Map Reduce task three mapTask={}", task);
return new ProcessResult(true, String.valueOf(task.getId() * 2));
}
return ProcessResult.success();
}
@Override
public ProcessResult reduce(JobContext jobContext) {
List<String> resultList = jobContext.getTaskResultList().stream().map(TaskResult::getResult)
.collect(Collectors.toList());
logger.info("Map Reduce resultList={}", resultList);
return ProcessResult.success();
}
@Data
@AllArgsConstructor
@NoArgsConstructor
public static class MapChildTaskTest {
private Integer id;
}
}
分片模型主要包含静态分片和动态分片:
任务特性****
/**
* @author stelin swoft@qq.com
* @since 1.0.7
*/
@Component
public class ShardingAnnotationProcessor {
private static final Logger logger = LoggerFactory.getLogger("openjob");
@Openjob("annotationShardingProcessor")
public ProcessResult shardingProcessor(JobContext jobContext) {
logger.info("Sharding annotation processor execute success! shardingId={} shardingNum={} shardingParams={}",
jobContext.getShardingId(), jobContext.getShardingNum(), jobContext.getShardingParam());
logger.info("jobContext={}", jobContext);
return ProcessResult.success();
}
}
广播任务类型的任务实例会广播到应用对应的所有 Worker 上执行,当所有 Worker 都执行完成,该任务才算完成,任意一台 Worker 执行失败,任务就算失败。
应用场景
任务特性
广播任务类型可以选择多种,例如脚本或者 Java 任务。如果选择 Java ,还支持 preProcess 和 postProcess 高级特性。
/**
* @author stelin swoft@qq.com
* @since 1.0.7
*/
@Component("broadcastPostProcessor")
public class BroadcastProcessor implements JavaProcessor {
private static final Logger logger = LoggerFactory.getLogger("openjob");
@Override
public void preProcess(JobContext context) {
logger.info("Broadcast pre process!");
}
@Override
public ProcessResult process(JobContext context) throws Exception {
logger.info("Broadcast process!");
return new ProcessResult(true, "{\"data\":\"result data\"}");
}
@Override
public ProcessResult postProcess(JobContext context) {
logger.info("Broadcast post process taskList={}", context.getTaskResultList());
System.out.println(context.getTaskResultList());
return ProcessResult.success();
}
}
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.