自己搞网络,有 A 和 B 两部分独立数据与结果 C 相关,如果通过指定领域的先验经验的话,A 数据和结果关联性更大一些。不知道有没有什么技巧可以让网络更多地关注 A 而更少地关注 B ?
比如我现在有的输入,分别是用户评价(自然语言序列数据),以及结构化的用户关系图,我能否让网络的结果更多地受前者(或后者)的影响?
或者另外一个问题,比如我的关系图是树状的,是否有办法人为地让注意力更靠拢根节点而忽略叶子节点?
我想了想,各种各样的注意力机制,比如用自注意力层这种的话,似乎没听说过人为能怎么干预的。似乎只能让网络自己去学校,如果人类认为数据 A 与结果相关性更高,网络给出相反的结果也完全不奇怪,人类也没法修改。
另外一个简单想法是做两个独立分别接收两种数据然后将结果加权?这个感觉好像没有任何意义,相当于纯做线性运算,网络会自动优化结果,跟没做一模一样。。。
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.