原文发表于我的博客: NLP 领域学术界进展:2017
前一段听了 Manning 的分享,结合现实场景,这里做一次目前 NLP 学术界进展的 review
实际上,近年来 NLP/CV/大数据领域的学术界和工业界基本已经不分家了,学术界能做到的,只要不脱离工业太远(基础性改造),基本上就会在工业界得到应用。
图上大部分都表达为标注任务,做有监督学习都可以直接解决,特殊的,翻译类任务会作为文本对齐(序列化有监督学习)来解决,而 QA/Dialog 目前也没有摆脱标注样本训练的过程。
图上出现的比较有意思的几点:
图上没有出现的比较有意思的点:
Manning 表示 2017 是 NLP+Attention+BiLSTM 的一年,相信 2018 是 GAN+RL+NLP 的一年,不知明年是否有闲,可以发些文章
注:很多东西没有介绍,感兴趣的 V 友可以留言交流
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.