SlipStupig
2019-04-18 08:10:18 +08:00
我发现大家把对机器学习讨论有一种“小马过河”的感觉,来聊一下关于 AI 目前我了解的情况跟大家分享一下(本人小学学历,在不知名小厂做 NLP 方向,各位说的名校 phd 格格不入,所以大家不要盲目相信我说的话),目前 AI 工作主要有两类:
1. 工程类
主要是要提高公司在业务方面产出(推荐系统、各种识别系统等等,基本上公司业务已经有很大体量了),公司会相对比较保守,会用比较成熟的框架和算法,主要偏向于业务提升指标(以淘宝双十一为例,当年我们在购物车下面加入了--”你可能喜欢的商品“,给双十一输送了 2%的 GMV ),性能指标、还有开发效率,老板并不关心你用了算法,只关心你给他带来了多少利润
2. 学术 /研究类
学术类和研究类还要分在企业研究还是在高校,企业做研究基本上都是市面上有了理论但是并不成熟更没有落地的应用,然后把这些转成可落地的产品,这种情况需要强大数学功底和相关的专业背景(一般最少得 985 硕士以上学历,更重要的是智商和平台,实在太烧钱了),高校主要是做理论论证,理论改进和新领域挖掘(只需要证明有一定可能性就行),这种基本上都是博士在做
_______
关于工程化机器学习,大家基本上没有一个流程总结,我来给大家献丑,总结一下:
------------ ----------- 根据特征数据选择模型 _____________ 模型评估 ________ +++++++
|样本收集 | ---> |特征工程 | --------------------------> | 多模型模型训练 | -------------> |调参环节| ---> |模型融合|
------------ ----------- ------------------- ----------- +++++++
通过这些流程后最终转化成工程化代码,然后上线,不停的回测数据去优化模型,其实在这个里面最重要不是算法,而是数据和特征工程, 说这么多还是希望大家对自己喜欢的事不要犹豫,Just do it !