这几天有空余时间,把以前看到一半看不下去的深度学习书又拿出来重新翻看,遇到几个问题请教一下 v 友们
ResNet(
(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace=True)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(
(0): BasicBlock(
(conv1): Conv2d(64, 64...)
......
但是查了一下文档,torchvision 里面的模型基本都是 cv 方向用的,在看书学习 cnn 的时候还好说,但是比如想要学习 rnn 相关的时候就没有模型能参考了.
尝试自己定义 class ,使用官网范例里的 nn.LSTM()建立模型,但是结构打印就只能变成类似下面这样
for name, layer in nn.LSTM(64).named_parameters(recurse=True):
print(name, layer.shape, sep=" ")
'''
weight_ih_l0 torch.Size([256, 32])
weight_hh_l0 torch.Size([256, 64])
bias_ih_l0 torch.Size([256])
bias_hh_l0 torch.Size([256])
'''
搞得实在是一头雾水,搞不清楚 rnn 这东西到底是怎么搭起来的,请问 nn.module 有像 torchvision 里一样的可以查看结构的打印方式吗?
2.印象里以前学习的时候看人说过除了 torchvision 还有一些第三方的预训练模型库,效果也都不错,但是这次搜了一些关键字都没有搜到,有 v 友能推荐几个吗,以及其中有没有带有 RNN 、transformer 相关模型的
这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。
V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。
V2EX is a community of developers, designers and creative people.