ChatGPT 其实是通用人工智能的对立面

2023-04-06 10:09:54 +08:00
 swhhaa

有一种观点认为 人脑是大量神经元组成的神经网络,经过上百万年遗传进化(类似深度学习中的训练),智力也累计量变而质变,终于实现了所谓的智能。

但我觉得如果把神经网络的训练比作人类基因的遗传进化,那神经网络就缺少人类真正学习的过程。 比如,人类学会写代码并不是遗传出来的,而是通过接受自然语言形式的知识习得写代码的功能。 我更倾向把神经网络的训练比作个人的学习过程而不是遗传进化。人类遗传进化类似神经网络的一些超参数,例如层深,层的结构..。

那么对于 ChatGPT ,很明显。它的学习只能是,在代码层接受大量数据来调参。并不能通过它向人类提供的接口而学习。你当然可以对 ChatGPT 告诉它说 "Hi, 从今天起你叫小白,我将用小白来称呼你。",它也会短暂的记住“小白“是它的名字,但它只是在将 "Hi, 从今天起你叫小白,我将用小白来称呼你。"这句话添加到了输入中,根据输入计算输出来回答你。

你不能像教一个姗姗学步的孩子一样,从 1+1=2 一直教到微积分。ChatGPT 没有长期存储模块,当然这只是一方面,其实这也解释了为什么 ChatGPT 只接受 4096 个 Token 。

我想定义一个新名词“智力”,智力是结构的体现,而不是功能的象征,其中结构是功能的元数据,不随功能而改变。智力则决定了功能的上限,也决定了学习的效率。简单来说,人的智力并不会随着学会新知识而提高。对于同一个人,刚出生的婴儿和大学教授的智力是相同的。类比到深度学习,神经网络的智力在网络结构确定时也已确定,调参只增加它的功能而不是智力。所以人类遗传进化增长的是智力,因为大脑结构已经改变了。神经网络的训练增长的是功能。

说会通用人工智能。我理想中的通用人工智能首先应该是一个单机的结构,一个人的智力并不依靠互联网。第二通用人工智能要对外暴露学习接口,自然语言形式是最好的,视觉,听觉都可以,甚至神经网络的调参接口也可以。而 ChatGPT 并没有这样的接口。(所以可以本地跑的 LLM 模型是通用人工智能吗?理论上是的,但它的智力十分低下,你教会一个孩子 1+1=2 ,只需要对他用自然语言说出来就可以,但你教会一个从零开始的 LLM ,不知道要用多少数据,训练多长时间。这就是智力决定学习的效率。)

所以一个通用人工智能可以不会写代码,不知道 1+1=2 ,甚至连自己的名字都不知道。但我不介意从零开始指导她(只要她的智力足够高)。而 ChatGPT 正在走一条相反的道路,首先利用海量的计算能力和整个互联网的数据训练一个通晓天地万物的智能机器,但你却没法指导它成为你自己的模样,它属于 OpenAI 却不是你自己。

最后我并不质疑 ChatGPT 的价值,无论商业还是科研方面,ChatGPT 都已经成功证明了自己。我只是觉得世上不应该只有 xxGPT ,通用人工智能的道路满是荆棘,但光辉却洒满大地。希望通用人工智能早日实现。

一个 AI 小白的碎碎念。(前进提要:https://www.v2ex.com/t/893146)

14805 次点击
所在节点    程序员
128 条回复
me221
2023-04-06 12:29:02 +08:00
「 ChatGPT 没有长期存储模块」

=============

可以存硬盘里.
raymanr
2023-04-06 12:29:06 +08:00
我觉得这个已经超出了我的知识边界, 但确实也能明显感受到 Chatgpt 存在不同于以往 AI 的推理能力.

但是从历史角度来看, 也有不少东西是先应用了, 然后再慢慢被发现运行原理的, 或许 LLM 的能力再往上提升需要指数级别的投入增加; 或许通过 LLM 了解到了某些原理, 以后人类通过类似训练 LLM 的方式来学习? 谁知道呢.

而且如果把输入数据不局限于文本, 而扩展到视觉信息, 频率信息的输入(反正都是数据), 是否有可能在其他领域出比肩 chatgpt 能力的 AI ? 这些领域也是有待开发的.
yvescheung
2023-04-06 12:30:26 +08:00
@swhhaa 你不如问一问为什么地球生命花了几十亿年的进化才出现人类的智力,为什么人类的大脑不能像孙悟空一样从石头缝里蹦出来
binux
2023-04-06 12:32:32 +08:00
@swhhaa 哦,是吗?还是看到摸到听到尝到的信息,不一定就比纯语言训练数据少。
@llwwbb7 然而训练一个强化学习模型比教会狗还简单
swulling
2023-04-06 12:32:33 +08:00
@swhhaa 那你可能对科研有什么误解。

现实中研究 AGI ,并不是什么人说我要研究 AGI ,然后一步一步一步的就研究出来了。

而是各个实验室在很多领域年拱一卒,然后某个方向比如 LLM 恰好效果比较好,那就用一波。

至于是不是正确的路,我觉得目前没有人有资格说。只能说这个分支树是最靠近的,但是也可能是死路。

现在依然有很多实验室在拱别的领域。
swhhaa
2023-04-06 12:40:59 +08:00
@binux 盲人的智力和正常人并没有区别,聋子也一样。
makelove
2023-04-06 12:43:41 +08:00
@swhhaa 真做到这个通用程度可以说强 ai 了,秒杀真人,实现财务自由只要给 ai 一句话:“不管用什么办法,给爷网赚一个小目标”。这种 ai 至少要能无限推理步骤,目前的 ai 方式完全不行。
yangyaofei
2023-04-06 12:44:41 +08:00
@swhhaa 从你的发言没感受到真的读过论文
swhhaa
2023-04-06 12:48:37 +08:00
@swulling 如你所说,当前阶段 LLM 的效果的确是最好的,所以希望其他方向的实验室不要去跟风。 我的观点是 ChatGPT 不是正确的道路,不管是不是,我都想尽快体验到我理想中的 AGI ,宁愿我的观点是错的。
javlib
2023-04-06 13:06:25 +08:00
没有发明飞机前,人类对飞行的想象就是鸟人,人有翅膀和羽毛,跟鸟一样飞行。飞机出现后,人类对飞行的定义就多了一种,不用翅膀扇动的飞机也能飞行。
现在讨论“智能”,因为人类只见过人这种智能,所以只能想象像人一样的智能。其实不能排除有其他形式的智能,如果一个 AI 能完成人的工作,在 90%的任务上比 90%的人类做的好,我觉得就足以称为智能了。
再举个例子,同一道高中数学证明题,有的学生要按照老师教的套路,一步一步做证明,有的聪明学生可以一眼就构思出整个证明过程,并且更加简单优雅,这个普通学生看聪明学生的证明就觉得太神奇了,为什么不用一步一步做。现在 llm 就不像人类儿童的学习过程,但是 chatgpt 的输出在很多方面跟人的输出差不多,类比于飞行,我觉得可以把 llm 当作飞机,人就是自然演化的”鸟“,llm (飞机)和人(鸟)都可以(产生和输出智能)飞行
18601294989
2023-04-06 13:09:07 +08:00
ChatGP 当然能学习,只不过是你没有让他学习的权限罢了。 openAI 当然不能把这个权限给你,你会把自己的孩子送到一个陌生人的手里学习知识吗,你知道这个陌生人教的知识是对的还是错的啊、
swhhaa
2023-04-06 13:11:23 +08:00
@yangyaofei 我确实没有看过 Transformer 的论文,但 Transformer 不基于神经网络吗。如果路走错了,走的再远也是错的。关于 17 楼你的几个点
1. 我说的教是指把这些知识以自然语言的形式告诉 ChatGPT 。你如果指训练,它当然可以从 1+1=2 学到微积分,但有什么用,没学过代码的人能从零训练一个懂微积分的神经网络吗。但学过微积分的人却可以教会其他人微积分。
2. 如你所说,神经网络目前并没有好的解决方案。
3. ChatGPT Token 的限制当然并不直接受限于长期存储模块,但最初的神经网络本就不是为了实现通用人工智能而设计的。
4. 我给出了我理想中通用人工智能的定义,你当然可以说它是错的。
TMM
2023-04-06 13:25:59 +08:00
纠结名字没啥意义, 现在国内有实力的大组基本都 ALL IN 大模型了
FreshOldMan
2023-04-06 13:28:45 +08:00
TMM
2023-04-06 13:48:03 +08:00
首先人的智力在是婴儿和大学教授的时候是不一样的

其次隔行如隔山, transformer 都没看过建议不要上来就说 LLM 路线错了这种暴论
csimplestring
2023-04-06 14:21:49 +08:00
碳基智我们自己都还没搞清楚,凭什么要求硅基智能跟我们一样?
yangyaofei
2023-04-06 14:25:01 +08:00
@swhhaa

1. "教" 和 "训练" 的本质区别是什么? 为什么两者不同?为什么不能通过二实现一? LLM 训练的过程不是自然语言形式? 怎么定义 "模型没有学会微积分" 进而推广, 如何证明人类真的学会微积分? 利用一个例子去学会一类东西, 这个都到不了 LLM 这个阶段, 在 meta learning 的领域就已经被定义了. 最后最基本的,如何自大的认为 AGI 一定要通过自然语言才能"学成"一个 AGI?作为一个人类,也过于自大了吧?
2. 神经网络没有"好"的解决方案, 但是有的是还行的方案,以及 GPT 的解决方案
3. 关于 token 限制的认识, 明显说明你什么都没读过, 类似于:虽然我不怎么了解牛顿三大定律和黎曼积分更不知道参考系变换原理等等等等,但是我看了"一分钟看懂相对论"之后,觉得相对论是错误的,我觉得以后的相对论应该是 XXXXX

无知 自大 中二
swhhaa
2023-04-06 15:07:48 +08:00
@yangyaofei
1. 教和训练的区别就是伪人工智能和通用人工智能的本质区别。举例来说,如果有些知识是没有被 ChatGPT 训练的,你想让 ChatGPT 学到这些知识,只能通过训练的方式,但不会写代码的人是做不到的。对于通用人工智能,不会写代码的人却可以通过许多方式,自然语言也好,其他方式也好,如此的通用人工智能人人都有却又人人不同,并且自我迭代。

2. 也许吧。但 ChatGPT 并没有达到我的预期。

3. 如果你懂的话希望你解释下,如果你想反驳一个人请举出错误的观点并加以论证,而不是给人贴标签。如果你继续贴标签的话,希望不要回复了。
summerLast
2023-04-06 15:43:53 +08:00
我的观点是它不是对立面,只是其中的一个分支的具体实现,为什么是 chat 不是 roboot ,这是因为图片和文字生成是目前相对最快能出成绩的领域 ,他需要给金主一些正向反馈,从而获取更多的支持,而 chat gpt 目前只是一个基于 gpt 的 chat 界面,未来随着插件的发布和 memory 的加入你可以拥有自己 env 的 gpt, chat 是界面 ,gpt 才是关键,一切才刚开始,我对他往通用人工智能的靠近保持乐观的态度
Chihaya0824
2023-04-06 15:52:49 +08:00
那么他自己是怎么想的呢?
Chat gpt 自己觉得你在以下几点说的有点不准确:
1. The author believes that ChatGPT cannot learn from its interactions, i.e., it cannot acquire new knowledge in the way humans do through natural language. While it is true that ChatGPT cannot learn in real-time as humans do, it does learn from the vast amount of data it has been trained on, which includes natural language texts. It is important to note that GPT models, including ChatGPT, are pretrained on a large dataset and can be fine-tuned for specific tasks or domains. However, they do not have the ability to learn incrementally during an ongoing conversation.

2. The author argues that an ideal general AI should have a learning interface that accepts natural language input. While ChatGPT doesn't have this interface directly, it can still be fine-tuned on specific data or tasks, which could include examples of natural language input.

3. The author implies that an ideal general AI should have the intelligence to learn from scratch without prior knowledge or training, whereas ChatGPT is pretrained on a large amount of data from the internet. However, AI models like ChatGPT benefit from this pretraining because it allows them to have a broad understanding of various topics and helps them generate coherent and contextually relevant responses.

同时,肯定了你的这些观点:
1. ChatGPT's limitations: The author recognizes that ChatGPT has limitations, and it's essential to be aware of these when using the model. Some of the limitations include the inability to learn in real-time during conversations, providing incorrect or nonsensical answers, sensitivity to input phrasing, and a tendency to be verbose.

2. The need for a better AI: The author's pursuit of an ideal general AI suggests that they understand the importance of improving AI systems to overcome the limitations of current models like ChatGPT. The quest for a better AI is a crucial aspect of ongoing research in the field of artificial intelligence.

3. Importance of natural language learning: The author emphasizes the significance of AI systems being able to learn from natural language input. This is a valuable insight, as understanding and processing human language is a critical aspect of making AI more useful and accessible to a broader range of people and applications.

我个人觉得 chatgpt 的 token 限制和长期存储模块大概率是无关的
“GPT-4 now has 8k tokens max, and there is a larger 32k token model on the horizon in the API.” [here]( https://community.openai.com/t/gpt-4-api-what-is-the-chat-history-limit-and-token-completion-limit/103094/2)
现在目前 GPT4 已经就提供了>4096 个 token 的支持,以后也会变的更大。

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/930154

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX