ChatGPT 其实是通用人工智能的对立面

2023-04-06 10:09:54 +08:00
 swhhaa

有一种观点认为 人脑是大量神经元组成的神经网络,经过上百万年遗传进化(类似深度学习中的训练),智力也累计量变而质变,终于实现了所谓的智能。

但我觉得如果把神经网络的训练比作人类基因的遗传进化,那神经网络就缺少人类真正学习的过程。 比如,人类学会写代码并不是遗传出来的,而是通过接受自然语言形式的知识习得写代码的功能。 我更倾向把神经网络的训练比作个人的学习过程而不是遗传进化。人类遗传进化类似神经网络的一些超参数,例如层深,层的结构..。

那么对于 ChatGPT ,很明显。它的学习只能是,在代码层接受大量数据来调参。并不能通过它向人类提供的接口而学习。你当然可以对 ChatGPT 告诉它说 "Hi, 从今天起你叫小白,我将用小白来称呼你。",它也会短暂的记住“小白“是它的名字,但它只是在将 "Hi, 从今天起你叫小白,我将用小白来称呼你。"这句话添加到了输入中,根据输入计算输出来回答你。

你不能像教一个姗姗学步的孩子一样,从 1+1=2 一直教到微积分。ChatGPT 没有长期存储模块,当然这只是一方面,其实这也解释了为什么 ChatGPT 只接受 4096 个 Token 。

我想定义一个新名词“智力”,智力是结构的体现,而不是功能的象征,其中结构是功能的元数据,不随功能而改变。智力则决定了功能的上限,也决定了学习的效率。简单来说,人的智力并不会随着学会新知识而提高。对于同一个人,刚出生的婴儿和大学教授的智力是相同的。类比到深度学习,神经网络的智力在网络结构确定时也已确定,调参只增加它的功能而不是智力。所以人类遗传进化增长的是智力,因为大脑结构已经改变了。神经网络的训练增长的是功能。

说会通用人工智能。我理想中的通用人工智能首先应该是一个单机的结构,一个人的智力并不依靠互联网。第二通用人工智能要对外暴露学习接口,自然语言形式是最好的,视觉,听觉都可以,甚至神经网络的调参接口也可以。而 ChatGPT 并没有这样的接口。(所以可以本地跑的 LLM 模型是通用人工智能吗?理论上是的,但它的智力十分低下,你教会一个孩子 1+1=2 ,只需要对他用自然语言说出来就可以,但你教会一个从零开始的 LLM ,不知道要用多少数据,训练多长时间。这就是智力决定学习的效率。)

所以一个通用人工智能可以不会写代码,不知道 1+1=2 ,甚至连自己的名字都不知道。但我不介意从零开始指导她(只要她的智力足够高)。而 ChatGPT 正在走一条相反的道路,首先利用海量的计算能力和整个互联网的数据训练一个通晓天地万物的智能机器,但你却没法指导它成为你自己的模样,它属于 OpenAI 却不是你自己。

最后我并不质疑 ChatGPT 的价值,无论商业还是科研方面,ChatGPT 都已经成功证明了自己。我只是觉得世上不应该只有 xxGPT ,通用人工智能的道路满是荆棘,但光辉却洒满大地。希望通用人工智能早日实现。

一个 AI 小白的碎碎念。(前进提要:https://www.v2ex.com/t/893146)

14856 次点击
所在节点    程序员
128 条回复
probe301
2023-04-06 15:54:58 +08:00
其实, 能理解楼主是在真诚的思考和讨论,
但确实提到事实错误太多了, 看着不舒服, 具体错误不想挨个说

> 我想定义一个新名词 “智力”
定义 “智力” 这太糟了, 宁可用一个冗长但无歧义的词,
比如 "决定生物 /硅基物的学习潜力限制的物理基础" (这词也不精确)
这坨问题已经很复杂了, 别再引入似是而非的词语了

楼主其实不太在意具体工程细节, 他就想跟大伙讨论 ChatGPT 这条思路, 对于实现通用智能的目标, 是不是走歪了

这其实有许多人都批判过了, 有篇
http://www.incompleteideas.net/IncIdeas/BitterLesson.html
全文说的是: 人类的概念, 可能只是人类蹩脚的认知工具 / 脚手架,
别把人类 "为了认识世界而生造的概念" 灌输给机器,
应该让它自己学, 让 AI 能够像我们一样发现, 而不是教给 AI 我们已发现的

楼主可以看看
zhengkk
2023-04-06 16:01:32 +08:00
@churchmice #7 出道即巅峰可以理解,欲速则不达什么鬼?这不是在一步步的优化么,只能说是进展飞快。如果您所指的专业领域是关于中文内容的话,确实可以说是忽悠小白,这是天朝的大环境所致,或许您可以试试用纯英文沟通交流,据说美国大学生都用它来写论文。
superJava
2023-04-06 16:11:13 +08:00
我感觉你在巨人肩膀上拉了泡屎,每一段都有槽点,无力反驳了
0o0o0o0
2023-04-06 16:21:19 +08:00
1.没学过代码的人不能训练神经网络,因为 chatgpt 并没有完整实现人的全部功能,但是不代表他不能模拟部分功能,也不能说明他是人工智能的对立面。
2.神经网络本身就包含了记忆,比如人脑的海马体就是短期记忆,而 chatgpt 的记忆目前只能用 token ,但是这只是说明了他没有记忆网络,还是不能说明他是人工智能的对立面。

联系 1 和 2 ,其实你和他对话本身就是在训练他,只不过这个 token 并不是存储在这个神经网络中,并且每次刷新都会复原而已。

3.的确神经网络本身基本上决定了智力(不过儿童和成人智力水平还是有区别的,人脑在幼儿时期神经元之间的连接是快速变化的,大了就固定下来了,很难再改变),而 gpt 很显然规模相比于人脑还是太小了,所以智力肯定无法和人比。
swhhaa
2023-04-06 16:35:55 +08:00
@Chihaya0824 我不知道你是怎么向 ChatGPT 提问的。但是其中不准确的几个点感觉没说到点子上啊。
1. ChatGPT 的训练材料包含自然语言,但这些不能直接喂给 ChatGPT ,许多向量化等操作后早就不是自然语言了。
2. 我文中并没指明通用人工智能一定要通过自然语言接口学习。而且 ChatGPT 通过 fine-tune 来实现各种任务和我的观点并不冲突。
你可以把我这些话再发给它看看能不能理解...

@0o0o0o0 其实我这里的对立面是指:其他方向的研究人员看到 ChatGPT 目前如此成功,跟风去搞 ChatGPT 。很有可能像多年前符号主义打败连接主义一样,走了很多年弯路后发现符号主义是错的。ChatGPT 也有可能带偏整个业界,导致 AGI 出现晚许多年。至少在我看来。
ErrorMan
2023-04-06 16:37:32 +08:00
感觉楼主需要先区分哪些是 OpenAI 做的安全措施,哪些是 ChatGPT 的本身限制。

关于记忆的问题,ChatGPT 并不需要作为一个完整的存在,它完全可以接入更多的设施来补全相关的方面,比如外置存储设备来保存记忆,其实现在聊天输入的上下文也是一种短暂的记忆。

另外谈到论文,论文研究里已经有人在尝试把 ChatGPT 组合到各种已有的 AI 里,这个过程只要提供接口 ChatGPT 就能学习如何使用,它可以成为那个万能的粘合剂。

总结下来还是那句话,ChatGPT 不需要作为完整的 AGI 存在,它只要成为拼图其中重要的一块碎片就够了。
0o0o0o0
2023-04-06 16:51:23 +08:00
@swhhaa
1.人脑也不是直接把声音直接啪地放到脑子里了,首先要经过各种传导,到耳蜗之后通过听觉毛细胞对声音的不同频段进行分离并且转化为电信号,再通过神经传递到脑部,而这之间本身就和特征提取很相似。其他的视觉什么的也是一样的。所以说可以说向量化本身就可以作为这个网络的一部分。
2.ChatGPT 也有可能带偏整个业界,导致 AGI 出现晚许多年,但是也可能是正确的,但是人无法预知自己不可能预知的事情,“ChatGPT 也有可能带偏整个业界”本身只有在未来才能被证明。
swhhaa
2023-04-06 16:57:16 +08:00
@0o0o0o0 你说的第一点启发了我,声音各种转化的过程属于 AI 的功能,所以为啥不给 ChatGPT 添加一个把自然语言向量化的模块让它可以直接通过自然语言学习呢?
0o0o0o0
2023-04-06 16:59:15 +08:00
@swhhaa 你是觉得科研资源分配不能够过于偏向 gpt ,但是这不是 gpt 的问题,即使没有 gpt 有其他 abc 、cde ,能实现好的效果,资源仍然会倾向他们。所以按照这种逻辑“gpt 是人工智能对立面”应该改成“人类的趋利是人工智能的对立面”。但是到底 gpt 是不是人工智能的未来,本身就不可能知道,但是至少他现在的效果最好。
TMM
2023-04-06 17:05:09 +08:00
虽然知道我连高等数学统计推断可能都学不明白, 但是我觉得我能聊一聊 AGI 的路线是不是对的

Confidence is all you need
jhdxr
2023-04-06 17:09:17 +08:00
这个 AI 小白是民科也算科学家的另外一种表达吗?

1. 现在的神经网络虽说借鉴了人脑,但的确绝对不一样(目前没有任何生物学上的研究能证明类似 BP 这样的机制的存在)。
2. 我之前也不认为现有的方式能够做到真正的 AGI ,但现在看来这很有可能是通向足够好的 AGI 的方式。

===
帖子里剩下的内容就**全**是槽点了。不重复其他人的发言顺着当前的讨论反驳几点:
@swhhaa #65
1. 『许多向量化等操作后早就不是自然语言了。』一个只会中文的人面对一个只会英语的人能不能认为对方完全没有语言能力?吱哇乱叫不知所云。
2. 你一直在强调的模型没有记忆功能,那模型的参数是啥?没有记忆功能只是因为在做 predict 的时候不会去更新参数。如果现在有一种神奇的力量锁定了你大脑的突触之间的连接(并且这种神奇的力量也可以随时解除 /再锁定),你觉得你有记忆功能吗?
0o0o0o0
2023-04-06 17:14:11 +08:00
@swhhaa 向量化本身就是它的一部分啊,如果你说的是为什么我不能直接给“它”一个 txt 文件就好了,就好比有的程序是图形界面的,有的程序只有命令界面没有图形界面,因为面向的用户不同,而训练这个场景面向的基本上都是开发者,其次 gpt 本身并没有智能到那个程度,就像如果一个人只有大脑的部分,想要“教”他,需要人为搭建环境、处理各种信息生成电信号刺激这个大脑,况且 gpt 甚至只相当于大脑的一个区块。
SunnyCoffee
2023-04-06 17:18:06 +08:00
你低估了一个孩子理解“1+1=2”需要的训练成本。孩子出生开始就通过视觉、触觉、味觉、嗅觉、听觉多维度的接受信息输入,同时思考还会从已有的信息中派生出更多的信息,这一过程持续几年产生的输入信息是海量的。
swhhaa
2023-04-06 17:18:34 +08:00
@jhdxr
1. 不知道你想反驳啥... 人类可以通过自然语言形式的知识学习,神经网络只能通过向量形式的知识学习。如果普通人可以把知识天然得向量化并传授给 ChatGPT ,那我就认为它是 AGI 。
2. 你觉得你调一次 ChatGPT 的 API 告诉它一些知识,它的参数会变化?神经网络学到的是参数,但你跟 ChatGPT 说话并不能更新参数,所以你觉得调用 ChatGPT 的 API 就可以让 ChatGPT 学习吗?那么学的是啥?既然啥都没有学到那他把你告诉它的知识存在了哪里?
Ericcccccccc
2023-04-06 17:21:08 +08:00
你感觉自己是怎么学会 1+1=2 的?
swhhaa
2023-04-06 17:23:50 +08:00
@jhdxr 当然,如果 ChatGPT 可以在 predict 过程中自己更新参数,我承认我整篇文章都错了。
ALLROBOT
2023-04-06 17:24:22 +08:00
搞笑,科学家都没弄明白离散数学,更别说体现离散数学的神经网络

等搞明白了再争论人工智能的定义
thinker007
2023-04-06 17:37:11 +08:00
人类要飞行 无需弄懂鸟类如何飞行,事实上 弄懂鸟类飞行就是一条错误的道路,正如历史上的扑翼机没一个成功的。

同样,要模拟人脑,本身就无需全部模拟人脑的结构,能端到端的实现学习的效果就好。
plmsuper8
2023-04-06 17:41:02 +08:00
GPT4:这篇帖子讨论了 ChatGPT 和通用人工智能之间的关系。作者认为,虽然神经网络的训练过程类似于人类基因的遗传进化,但神经网络缺少了与人类学习相对应的过程。ChatGPT 只能通过大量数据调整参数,而无法通过与人类交互的方式学习。作者还提出了一个新的名词“智力”,指的是结构的体现而非功能象征,智力会决定一个模型学习的上限和效率。 这篇帖子引发了不少讨论,有些人认为 ChatGPT 已经基本符合现有通用人工智能的定义,而有些人则认为 ChatGPT 不是他们心目中的通用人工智能。但我们需要理解不同观点和看法,并保持开放的心态。尽管 ChatGPT 有一些局限性,但这并不意味着它对科研和商业应用没有价值。通用人工智能的道路仍然充满挑战,我们需要不断尝试新的方法和思路来追求更理想的智能。
plmsuper8
2023-04-06 17:44:48 +08:00
BTW ,现在有用插件扩展 LLM 知识的方法。就是先搜索本地向量化知识库,再用 LLM 组织语言

这是一个专为移动设备优化的页面(即为了让你能够在 Google 搜索结果里秒开这个页面),如果你希望参与 V2EX 社区的讨论,你可以继续到 V2EX 上打开本讨论主题的完整版本。

https://www.v2ex.com/t/930154

V2EX 是创意工作者们的社区,是一个分享自己正在做的有趣事物、交流想法,可以遇见新朋友甚至新机会的地方。

V2EX is a community of developers, designers and creative people.

© 2021 V2EX