分段连续:在某个区间(常见为闭区间 ([a,b]))上,可以把区间分成有限个子区间,使函数在每个子区间内连续;在分点处允许出现有限个不连续点(常见为跳跃不连续),通常还要求这些分点处的左右极限存在且有限。该性质常用于定积分、傅里叶级数与信号分析等场景。
/ˌpiːsˌwaɪz kənˈtɪnjuəs/
A piecewise continuous function is integrable on a closed interval.
分段连续的函数在闭区间上是可积的。
Although the signal is not continuous at the switching times, it is piecewise continuous, so its Fourier series can still be studied.
尽管该信号在切换时刻不连续,但它是分段连续的,因此仍然可以研究它的傅里叶级数。
piecewise 来自 piece(“片、段”)+ 后缀 -wise(“以……方式/逐……地”),整体表达“按段/逐段地”。continuous 源自拉丁语 continuus(“连贯的、不中断的”)。合起来 piecewise continuous 就是“在每一段上连续”的意思,是数学分析里非常常用的术语。