V2EX = way to explore
V2EX 是一个关于分享和探索的地方
现在注册
已注册用户请  登录
codeboy18
V2EX  ›  Big Data

一文读懂 clickhouse 集群监控

  •  
  •   codeboy18 · 2021-02-28 21:49:32 +08:00 · 1879 次点击
    这是一个创建于 1429 天前的主题,其中的信息可能已经有所发展或是发生改变。

    更多精彩内容,请关注微信公众号:后端技术小屋

    一文读懂 clickhouse 集群监控

    常言道,兵马未至,粮草先行,在 clickhouse 上生产环境之前,我们就得制定好相关的监控方案,包括 metric 采集、报警策略、图形化报表。有了全面有效的监控,我们就仿佛拥有了千里眼顺风耳,对于线上任何风吹草动都能及时感知,在必要的情况下提前介入以避免线上故障。

    业界常用的监控方案一般是基于 prometheus + grafana 生态。本文将介绍由 clickhouse-exporter(node-exporter) + prometheus + grafana 组成的监控方案。

    clickhouse 监控方案

    以上为监控方案示意图

    • clickhouse-server 中有 4 个系统表会记录进程内部的指标,分别是system.metricssystem.asynchronous_metrics, system.eventssystem.parts
    • clickhuse-exporter 是一个用于采集 clickhouse 指标的开源组件( https://github.com/ClickHouse/clickhouse_exporter),它会定时查询 clickhouse-server 中的系统表,转化成监控指标,并通过 HTTP 接口暴露给 prometheus.
    • node-exporter 是一个用于采集硬件和操作系统相关指标的开源组件( https://github.com/prometheus/node_exporter)。
    • prometheus 定时抓取 clickhouse-exporter 暴露的指标,并判断报警条件是否被触发,是则推送到 alert manager
    • DBA 可通过 grafana 看板实时查看当前 clickhouse 集群的运行状态
    • DBA 可通过 alertmanager 设置报警通知方式,如邮件、企业微信、电话等。

    1 部署与配置

    1.1 clickhouse-server

    我们生产环境版本为20.3.8,按照官方文档部署即可。

    1.2 clickhouse-exporter

    clickhouse-exporter 一般与 clickhouse-server 同机部署。

    首先下载最新代码并编译(需预先安装 Go)

    git clone https://github.com/ClickHouse/clickhouse_exporter  
    cd clickhouse_exporter  
    go mod init  
    go mod vendor  
    go build   
    ls ./clickhouse_exporter  
    

    然后启动

    export CLICKHOUSE_USER="user"  
    export CLICKHOUSE_PASSWORD="password"  
    nohup ./-scrape_uri=http://localhost:port/ >nohup.log 2>&1 &  
    

    最后检查指标是否被正常采集:

    > curl localhost:9116/metrics | head  
    # TYPE clickhouse_arena_alloc_bytes_total counter  
    clickhouse_arena_alloc_bytes_total 9.799096840192e+12  
    # HELP clickhouse_arena_alloc_chunks_total Number of ArenaAllocChunks total processed  
    # TYPE clickhouse_arena_alloc_chunks_total counter  
    clickhouse_arena_alloc_chunks_total 2.29782524e+08  
    # HELP clickhouse_background_move_pool_task Number of BackgroundMovePoolTask currently processed  
    # TYPE clickhouse_background_move_pool_task gauge  
    clickhouse_background_move_pool_task 0  
    # HELP clickhouse_background_pool_task Number of BackgroundPoolTask currently processed  
    

    1.3 node-exporter

    node-exporter 需与 clickhouse-server 同机部署

    首先下载最新代码并编译

    git clone https://github.com/prometheus/node_exporter  
    make build  
    ls ./node_exporter  
    

    然后启动

    nohup ./node_exporter > nohup.log 2>&1 &   
    

    最后检查指标是否被正常采集

    > curl localhost:9100/metrics  
    # HELP go_gc_duration_seconds A summary of the GC invocation durations.  
    # TYPE go_gc_duration_seconds summary  
    go_gc_duration_seconds{quantile="0"} 6.3563e-05  
    go_gc_duration_seconds{quantile="0.25"} 7.4746e-05  
    go_gc_duration_seconds{quantile="0.5"} 9.0556e-05  
    go_gc_duration_seconds{quantile="0.75"} 0.000110677  
    go_gc_duration_seconds{quantile="1"} 0.004362325  
    go_gc_duration_seconds_sum 28.451282046  
    go_gc_duration_seconds_count 223479  
    ...  
    

    1.4 prometheus

    修改 prometheus 配置文件,添加 alertmanager 地址、clickhouse-exporter 地址

    prometheus.yml 示例如下:

    global:  
      scrape_interval:     15s # Set the scrape interval to every 15 seconds. Default is every 1 minute.  
      evaluation_interval: 15s # Evaluate rules every 15 seconds. The default is every 1 minute.  
      
    # Alertmanager configuration  
    alerting:  
      alertmanagers:  
      - static_configs:  
        - targets:  
          - alertmanager:9093  
      
    # Load rules once and periodically evaluate them according to the global 'evaluation_interval'.  
    rule_files:  
      - ./rules/*.rules  
      
    # A scrape configuration containing exactly one endpoint to scrape:  
    # Here it's Prometheus itself.  
    scrape_configs:  
      # The job name is added as a label `job=<job_name>` to any timeseries scraped from this config.  
      - job_name: 'clickhouse'  
      
        # metrics_path defaults to '/metrics'  
        # scheme defaults to 'http'.  
        static_configs:  
        - targets: ['clickhouseexporter1:9116', 'clickhouseexporter2:9116', ...]  
    

    *.rules 示例如下:

    groups:  
     - name: qps_too_high  
       rules:  
       - alert: clickhouse qps 超出阈值  
         expr: rate(clickhouse_query_total[1m]) > 100  
         for: 2m  
         labels:  
          job: clickhouse-server  
          severity: critical  
          alertname: clickhouse qps 超出阈值  
         annotations:  
          summary: "clickhouse qps 超出阈值"  
          description: "clickhouse qps 超过阈值(100), qps: {{ $value }}"  
    

    启动 promethus

    nohup ./prometheus --config.file=/path/to/config --storage.tsdb.path=/path/to/storage --web.external-url=prometheus --web.enable-admin-api --web.enable-lifecycle --log.level=warn >nohup.log 2>&1 &   
    

    浏览器输入http://prometheus_ip:9090检查 prometheus 状态

    1.5 alert manager

    首先修改配置文件

    配置文件示例如下:

    route:  
      receiver: 'default'  
      group_by: ['service','project']  
      
    receivers:  
    - name: "电话"  
      webhook_configs:  
      - url: <url>  
      
    - name: "企业微信"  
      webhook_configs:  
      - url: <url>  
      
    - name: "邮箱"  
      webhook_configs:  
      - url: <url>  
    

    然后启动

    nohup ./alertmanager --config.file=/path/to/config --log.level=warn >nohup.log 2>&1 &  
    

    1.6 grafana

    关于 clickhouse 的 dashboard 模板已经有很多,在这里推荐: https://grafana.com/grafana/dashboards/882 将它导入到新建的 grafana dashboard 之后,即可得到漂亮的 clickhouse 集群看板(可能需要微调)。

    另外建议安装 clickhouse datasource 插件。有了这个插件便能在 grafana 中配置 clickhouse 数据源,并通过 Clickhouse SQL 配置图表,详细文档见: https://grafana.com/grafana/plugins/vertamedia-clickhouse-datasource

    2 重要指标和监控

    我们可以看到,不管是 node-exporter 还是 clickhouse-exporter,它们的指标种类很多,大概有几百个。我们的策略是抓大放小,对于重要的指标才设置报警策略并创建看板。

    下面列举一些个人觉得比较重要的指标

    2.1 系统指标

    系统指标由 node-exporter 采集

    指标名 指标含义 报警策略 策略含义
    node_cpu_seconds_total 机器累计 cpu 时间(单位 s) 100 * sum without (cpu) (rate(node_cpu_seconds_total{mode='user'}[5m])) / count without (cpu) (node_cpu_seconds_total{mode='user'}) > 80 用户态 cpu 利用率大于 80%则报警
    node_filesystem_size_bytes/node_filesystem_avail_bytes 机器上个文件分区容量 /可用容量 100 * (node_filesystem_size_bytes{mountpoint="/data"} - node_filesystem_avail_bytes{mountpoint="/data"}) / node_filesystem_size_bytes{mountpoint="/data"} > 80 /data 盘占用超过 80%则报警
    node_load5 5 分钟 load 值 node_load5 > 60 5 分钟 load 值超过 60 则报警(可根据具体情况设置阈值)
    node_disk_reads_completed_total 累计读磁盘请求次数 rate(node_disk_reads_completed_total[5m]) > 200 read iops 超过 200 则报警

    2.2 clickhouse 指标

    指标名 指标含义 报警策略 策略含义
    clickhouse_exporter_scrape_failures_total prometheus 抓取 exporter 失败总次数 increase(clickhouse_exporter_scrape_failures_total[5m]) > 10 prometheus 抓取 export 失败次数超过阈值则报警,说明此时 ch 服务器可能发生宕机
    promhttp_metric_handler_requests_total exporter 请求 clickhouse 失败总次数 increase(promhttp_metric_handler_requests_total{code="200"}[2m]) == 0 2 分钟内查询 clickhouse 成功次数为零则报警,说明此时某个 ch 实例可能不可用
    clickhouse_readonly_replica ch 实例中处于只读状态的表个数 clickhouse_readonly_replica > 5 ch 中只读表超过 5 则报警,说明此时 ch 与 zk 连接可能发生异常
    clickhouse_query_total ch 已处理的 query 总数 rate(clickhouse_query_total[1m]) > 30 单实例 qps 超过 30 则报警
    clickhouse_query ch 中正在运行的 query 个数 clickhouse_query > 30 单实例并发 query 数超过阈值则报警
    clickhouse_tcp_connection ch 的 TCP 连接数 clickhouse_tcp_connection > XXX
    clickhouse_http_connection ch 的 HTTP 连接数 clickhouse_http_connection > XXX
    clickhouse_zoo_keeper_request ch 中正在运行的 zk 请求数 clickhouse_zoo_keeper_request > XXX
    clickhouse_replicas_max_queue_size ch 中 zk 副本同步队列的长度 clickhouse_replicas_max_queue_size > 100 zk 副本同步队列长度超过阈值则报警,说明此时副本同步队列出现堆积

    2.3 其他常用 SQL

    在 clickhouse 中,所有被执行的 Query 都会记录到system.query_log表中。因此我们可通过该表监控集群的查询情况。以下列举几种用于监控的常用 SQL 。为了更方便的查看,可添加到 grafana 看板中。

    最近查询

    SELECT   
        event_time,   
        user,   
        query_id AS query,   
        read_rows,   
        read_bytes,   
        result_rows,   
        result_bytes,   
        memory_usage,   
        exception  
    FROM clusterAllReplicas('cluster_name', system, query_log)  
    WHERE (event_date = today()) AND (event_time >= (now() - 60)) AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')  
    ORDER BY event_time DESC  
    LIMIT 100  
    

    慢查询

    SELECT   
        event_time,   
        user,   
        query_id AS query,   
        read_rows,   
        read_bytes,   
        result_rows,   
        result_bytes,   
        memory_usage,   
        exception  
    FROM clusterAllReplicas('cluster_name', system, query_log)  
    WHERE (event_date = yesterday()) AND query_duration_ms > 30000 AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')  
    ORDER BY query_duration_ms desc  
    LIMIT 100  
    

    Top10 大表

    SELECT   
        database,   
        table,   
        sum(bytes_on_disk) AS bytes_on_disk  
    FROM clusterAllReplicas('cluster_name', system, parts)  
    WHERE active AND (database != 'system')  
    GROUP BY   
        database,   
        table  
    ORDER BY bytes_on_disk DESC  
    LIMIT 10  
    

    Top10 查询用户

    SELECT   
        user,   
        count(1) AS query_times,   
        sum(read_bytes) AS query_bytes,   
        sum(read_rows) AS query_rows  
    FROM clusterAllReplicas('cluster_name', system, query_log)  
    WHERE (event_date = yesterday()) AND (is_initial_query = 1) AND (query NOT LIKE 'INSERT INTO%')  
    GROUP BY user  
    ORDER BY query_times DESC  
    LIMIT 10  
    

    更多精彩内容,请扫码关注微信公众号:后端技术小屋。如果觉得文章对你有帮助的话,请多多分享、转发、在看。

    目前尚无回复
    关于   ·   帮助文档   ·   博客   ·   API   ·   FAQ   ·   实用小工具   ·   1879 人在线   最高记录 6679   ·     Select Language
    创意工作者们的社区
    World is powered by solitude
    VERSION: 3.9.8.5 · 27ms · UTC 03:27 · PVG 11:27 · LAX 19:27 · JFK 22:27
    Developed with CodeLauncher
    ♥ Do have faith in what you're doing.